Final Mark Scheme

2816/01

Ques	tion		Expected Answers	Marks
1	(a)	(i)	rate at start (of reaction)/ t=0 ✓	[1]
		(ii)	0.048 (mol dm ⁻³ s ⁻¹) ✓	[1]
	(b)	(i)	C ₁₂ H ₂₂ O ₁₁ (aq):	
			Exp 2 has twice $[C_{12}H_{22}O_{11} (aq)]$ as Exp 1 and rate x 2 \checkmark , so order = 1 with respect to $C_{12}H_{22}O_{11}\checkmark$	
			HCl(aq): Exp 3 has 1.5 x [HCl] as Exp 1 and rate increases by 1.5 ✓, so order = 1 with respect to HCl(aq) ✓ ORDER HAS TO BE CORRECT TO GET REASON MARK	[4]
		(ii)	2/second order ✓ This will be dependent on answer to (i)	[1]
		(iii)	rate = <i>k</i> [C ₁₂ H ₂₂ O ₁₁] [HCl] ✓✓ OR	
			rate = 2.4 [$C_{12}H_{22}O_{11}$] [HCI] $\checkmark \checkmark$	[2]
			rate = $k [C_{12}H_{22}O_{11}] [H_2O]$ scores 1 mark) rate = $[C_{12}H_{22}O_{11}] [HCI]$ scores 1 mark) $k [C_{12}H_{22}O_{11}] [HCI]$ scores 1 mark) $k = [C_{12}H_{22}O_{11}] [HCI]$ scores zero Check for ecf from (i)	
	(C)		increases ✓	[1]
	(d)	(i)	time for concentration (of a reactant) to fall to half the original value \checkmark	[1]
		(ii)	$C_{12}H_{22}O_{11}$: 0.05 mol dm ⁻³ \checkmark In one half life, [$C_{12}H_{22}O_{11}$], concentration halves 0.1/2 \checkmark	
			HCI: 0.1 mol dm ⁻³ ✓ <i>Assume</i> mol dm ⁻³ unless told otherwise <i>Assume</i> 'mol dm ³ means mol dm ⁻³ but Penalise wrong unit once only	[3]
				Total: 14

2816/01

Question	Expected Answers	Marks	
2 (a) (i)	$K_{c} = \frac{[NO]^{2}}{[N_{2}] [O_{2}]} \checkmark \checkmark \qquad award \ 1 \ mark \ if \ upside \ down \\ K_{p} \ expression \ worth \ 1 \ mark$	[2]	
(ii) (iii)	Equil \longrightarrow left because K_c is very small $[O_2(g)] = \frac{[NO]^2}{[N_2] \times K_c} = \frac{(4.0 \times 10^{-16})^2}{1.1 \times 4.8 \times 10^{-31}} \checkmark$	[1]	
	= 0.30 mol dm ⁻³ \checkmark (calculator: 0.303030303) answer given to 2 sig figs \checkmark 3.3 $\checkmark \checkmark$ (upside down) calc: 3.3 7.6 x 10 ¹⁴ $\checkmark \checkmark$ (missing out ²) calc: 7.5757 0.37 $\checkmark \checkmark$ (1.1 on top) calc: 0.366666 5.2 x 10 ⁻⁴⁶ $\checkmark \checkmark$ ('4' values swapped) calc: 5.236363. x 10 ⁻⁴⁶	[2]	
(b) (i)		[3]	
(b) (i) (ii)	equilibrium moves to the right to compensate for increase in temperature/to lower the temperature / to minimise the change \checkmark		
	increase in proportion of NO \checkmark because K_c increases		
	enthalpy change ✓	[4]	
(iii)	2NO + $O_2 \longrightarrow 2NO_2 \checkmark \checkmark$ species correct for 1st mark 'simplest' balanced equation for 2nd mark NO + $1/_2O_2 \longrightarrow NO_2$ also gets both marks N_2O_4 is fine NO_2 for 1st mark	[2]	

Final Mark Scheme

2816/01

		Total: 20
	Quality of written communication: Recognition of a compromise between rate and equilibrium amount ✓	[1]
	Catalyst used to increase rate by lowering the activation energy/providing a lower energy route ✓ NOT increase equilibrium yield	[7]
	10 atm used to increase rate by increasing concentration OR increasing collisons \checkmark	
	1000°C used to increase rate with more energetic collisions OR so that a greater proportion of molecules exceed activation energy ✓	
	Condition mark is independent	
	Reason mark can only be awarded if the condition mark is correct.	
(c)	Optimum Pressure low pressure ✓ fewer gaseous moles on left ✓ Optimum Temperature optimum: low temperature ✓ forward reaction is exothermic ✓	
(-)	Ontimum Proceuro	

Ques	stion		Expected Answers	Marks
3	(a)	(i)	$pH = -log[H^{+}(aq)] \checkmark$ state symbols not needed	[1]
		(ii) (iii)	HBr is stronger than CH ₃ COOH because pH is lower \checkmark HBr dissociates more/more H ⁺ ions for the same concentration \checkmark	[2]
		()	diluting by a factor of 10/ 10-fold dilution \checkmark	[2]
			pH = 3 ✓	
			Credit a calculated pH for ecf from a wrong dilution with working shown	
	(b)	(i)	K _w = [H⁺(aq)] [OH⁻(aq)] ✓ <i>state symbols not needed</i>	[1]
		(ii)	$[H^{+}(aq) = \frac{K_{w}}{[OH^{-}(aq)]} = \frac{1.0 \times 10^{-14}}{0.0200} = 5 \times 10^{-13} \text{mol dm}^{-3} \checkmark$	
			pH = –log (5 x 10 ⁻¹³) = 12.30 ✓ (accent calc value: 12.30103)	
			ecf is possible for pH mark providing that the [H ⁺] value has been derived from K_w /[OH ⁻] If pOH method is used, pOH = 1.7 would get 1st mark, pH = 14 – 1.7 = 12.3 gets 2nd mark.	[2]
	(C)	(i)	start at pH=3.4 (approx half way up 0-7 rise) ✓ sharp rise at 20 cm ³ (must have a vertical part) ✓ finish higher above pH 7 than starting pH with line continued to 50 cm ³ but finish pH is less than 14 ✓ NOTE that lines should not loop	[3]
		(ii)	Indicator that has a pH range coinciding with steepest part of titration curve in (i). Likely to be thymol blue OR brilliant yellow√	
			pH range coincides withpH change during sharp rise /equivalence point ✓	[2]
				Total: 13
				L

Question			Expected Answers	Marks
4	(a)		P : O = 43.7/31 : 56.3/16 / 1.41 : 3.52 ✓	
			Ratio P:O = 2 : 5 / Empirical formula = $P_2O_5 \checkmark$	
			Molecular formula = P_4O_{10} (from M_r value) \checkmark	[3]
			Ca₃(PO₄)₂ ✓	
			Equations: $P_4 + 5O_2 \longrightarrow P_4O_{10} \checkmark$ (or $P_4 + 5O_2 \longrightarrow 2P_2O_5$)	[1]
			$\begin{array}{rcl} P_4O_{10} &+& 6H_2O &\longrightarrow& 4H_3PO_4 \checkmark \\ (\text{or } P_2O_5 &+& 3H_2O &\longrightarrow& 2H_3PO_4 \end{array}) \end{array}$	
			$Ca_3(PO_4)_2 + 3H_2SO_4 \longrightarrow 2H_3PO_4 + 3CaSO_4 \checkmark$	[3]
			A candidate who writes an equation forming P_4O_6 or P_2O_3 can score the equation mark for oxidation of P_4 .	
	(b)	(i)	$H_3PO_4 > H_2PO_4^- > HPO_4^{2-}$ Increased strengths with increasing K_a values \checkmark	[1]
		(ii)	Molar mass of Na ₂ HPO ₄ = 142 g mol ⁻¹ \checkmark	
			amount of Na₂HPO₄ = 4.26/142 = 0.03 mol ✓ e.c.f. mass/molar mass	
			volume of H₃PO₄ needed = 0.03 x 1000 / 0.5 = 60 cm³ ✓ e.c.f. moles Na₂HPO₄ x 1000/0.5	
			amount of NaOH = 2 x 0.03 = 0.06 mol ✓ e.c.f. 2 x moles Na₂HPO₄	
			volume of NaOH needed = 0.06 x 1000 / 0.5 = 120 cm ³ ✓ e.c.f. moles NaOH x 1000/0.5	[5]
			Penalise units once.	
				Total: 13