\begin{tabular}{|c|c|c|}
\hline Question \& Expected Answers \& Marks \\
\hline \[
\begin{array}{|lll}
\hline 1 \& \text { (a) } \& \text { (i) } \\
\& \& \text { (ii) } \\
\hline
\end{array}
\] \& rate at start (of reaction)/ \(t=0 \checkmark\)
\[
0.048\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \checkmark
\] \& \begin{tabular}{l}
[1] \\
[1]
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq}):\) \\
Exp 2 has twice \(\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})\right]\) as Exp 1 and rate \(\times 2 \checkmark\), so order = 1 with respect to \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\) \\
\(\mathrm{HCl}(\mathrm{aq})\) : \\
Exp 3 has \(1.5 \times[\mathrm{HCl}]\) as Exp 1 and rate increases by \(1.5 \checkmark\), so order \(=1\) with respect to \(\mathrm{HCl}(\mathrm{aq}) \checkmark\) \\
ORDER HAS TO BE CORRECT TO GET REASON MARK \\
2/second order \(\checkmark\) \\
This will be dependent on answer to (i)
\[
\begin{aligned}
\& \text { rate }= k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right][\mathrm{HCl}] \checkmark \checkmark \\
\& \text { OR } \\
\& \text { rate }= 2.4\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right][\mathrm{HCl}] \checkmark \checkmark \\
\& \\
\& \text { rate }=k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] \\
\& \text { rate }=\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right][\mathrm{HCl}] \\
\&\text { scores } 1 \text { mark }) \\
\& k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right][\mathrm{HCl}] \\
\& k=\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right][\mathrm{HCl}] \text { scores } 1 \text { mark) } \\
\& \text { Chark) } \\
\& \text { Check for ect from (i) } \\
\& \hline
\end{aligned}
\]
\end{tabular} \& [4]
[1]

$[2]$ \\
\hline (c) \& increases \checkmark \& [1] \\

\hline | (d) |
| :--- |
| (i) |
| (ii) | \& | time for concentration (of a reactant) to fall to half the original value |
| :--- |
| $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}: 0.05 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ |
| In one half life, $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]$, concentration halves $0.1 / 2 \checkmark$ |
| $\mathrm{HCl}: 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ |
| Assume $\mathrm{mol} \mathrm{dm}^{-3}$ unless told otherwise |
| Assume 'mol dm ${ }^{3}$ means $\mathrm{mol} \mathrm{dm}{ }^{-3}$ but |
| Penalise wrong unit once only | \& | [1] |
| :--- |
| [3] | \\

\hline \& \& Total: 14 \\
\hline
\end{tabular}

Question	Expected Answers	Marks
2 (a) (i) (ii) (iii)	$K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}$, award 1 mark if upside down K_{p} expression worth 1 mark Equil \longrightarrow left because K_{c} is very small $\left[\mathrm{O}_{2}(\mathrm{~g})\right]=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right] \times K_{c}}=\frac{\left(4.0 \times 10^{-16}\right)^{2}}{1.1 \times 4.8 \times 10^{-31}}$ $=0.30 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ (calculator: 0.303030303) answer given to 2 sig figs \checkmark $3.3 \checkmark \checkmark$ (upside down) calc: 3.3 $7.6 \times 10^{14} \checkmark \checkmark$ (missing out ${ }^{2}$) calc: $7.5757 \ldots .$. $0.37 \checkmark \checkmark$ (1.1 on top) calc: 0.366666 .. $5.2 \times 10^{-46} \checkmark \checkmark$ ('4' values swapped) calc: $5.236363 . \times 10^{-46}$	[2] [1] [3]
(b) (i) (ii) (iii)	ΔH is +ve \checkmark equilibrium moves to the right to compensate for increase in temperature/to lower the temperature / to minimise the change increase in proportion of NO \checkmark because K_{c} increases Can be linked to either increased proportion of NO or enthalpy change \checkmark $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2} \checkmark \checkmark$ species correct for 1st mark 'simplest' balanced equation for 2nd mark $\mathrm{NO}+{ }_{1} \mathrm{I}_{2} \longrightarrow \mathrm{NO}_{2}$ also gets both marks $\mathrm{N}_{2} \mathrm{O}_{4}$ is fine NO_{2} for 1st mark	[4] [2]

| (c) | Optimum Pressure
 low pressure \checkmark
 fewer gaseous moles on left \checkmark
 Optimum Temperature
 optimum: low temperature \checkmark
 forward reaction is exothermic \checkmark |
| :---: | :---: | :--- |
| Reason mark can only be awarded if the condition mark is
 correct.
 Condition mark is independent
 $1000^{\circ} \mathrm{C}$ used to increase rate with more energetic collisions
 OR so that a greater proportion of molecules exceed
 activation energy \checkmark
 10 atm used to increase rate by increasing concentration OR
 increasing collisons \checkmark
 Catalyst used to increase rate by lowering the activation
 energy/providing a lower energy route \checkmark
 NOT increase equilibrium yield | [7] |
| Quality of written communication:
 Recognition of a compromise between rate and equilibrium
 amount \checkmark | [1] |

Question	Expected Answers	Marks
3	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \checkmark$ state symbols not needed HBr is stronger than $\mathrm{CH}_{3} \mathrm{COOH}$ because pH is lower \checkmark HBr dissociates more/more H^{+}ions....... for the same concentration diluting by a factor of 10/ 10-fold dilution $\mathrm{pH}=3 \checkmark$ Credit a calculated pH for ecf from a wrong dilution with working shown	[1] [2] [2]
(b) (i) (ii)	$K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \checkmark$ state symbols not needed $\left[\mathrm{H}^{+}(\mathrm{aq})=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{0.0200}=5 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark\right.$ $\mathrm{pH}=-\log \left(5 \times 10^{-13}\right)=12.30 \checkmark$ (accept calc value: 12.30103) ecf is possible for pH mark providing that the $\left[\mathrm{H}^{+}\right]$ value has been derived from $K_{\mathrm{w}} /\left[\mathrm{OH}^{\prime}\right]$ If pOH method is used, $\mathrm{pOH}=1.7$ would get 1 st mark, $\mathrm{pH}=14-1.7=12.3$ gets 2 nd mark.	[1] [2]
(c) (i) (ii)	start at $\mathrm{pH}=3.4$ (approx half way up $0-7$ rise) \checkmark sharp rise at $20 \mathrm{~cm}^{3}$ (must have a vertical part) finish higher above pH 7 than starting pH \ldots. with line continued to $50 \mathrm{~cm}^{3}$ \qquad but finish pH is less than $14 \checkmark$ NOTE that lines should not loop Indicator that has a pH range coinciding with steepest part of titration curve in (i). Likely to be thymol blue OR brilliant yellow \checkmark pH range coincides with \qquad pH change during sharp rise lequivalence point	[3]
		Total: 13

\begin{tabular}{|c|c|c|}
\hline Question \& Expected Answers \& Marks \\
\hline 4 (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{P}: \mathrm{O}=43.7 / 31: 56.3 / 16 / 1.41: 3.52 \\
\& \text { Ratio } \mathrm{P}: \mathrm{O}=2: 5 / \text { Empirical formula }=\mathrm{P}_{2} \mathrm{O}_{5} \\
\& \text { Molecular formula }=\mathrm{P}_{4} \mathrm{O}_{10}\left(\text { from } M_{\mathrm{r}} \text { value }\right) \\
\& \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \checkmark
\end{aligned}
\] \\
Equations:
\[
\left\{\begin{array}{l}
\mathrm{P}_{4}+5 \mathrm{O}_{2} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10} \checkmark \\
\text { (or } \mathrm{P}_{4}+5 \mathrm{O}_{2} \longrightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5} \text {) } \\
\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \checkmark \\
\left(\text { or } \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}\right. \text {) } \\
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{CaSO}_{4}
\end{array}\right.
\] \\
A candidate who writes an equation forming \(\mathrm{P}_{4} \mathrm{O}_{6}\) or \(\mathrm{P}_{2} \mathrm{O}_{3}\) can score the equation mark for oxidation of \(\mathrm{P}_{4}\).
\end{tabular} \& \begin{tabular}{l}
[3] \\
[1] \\
[3]
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii)
\end{tabular} \& ```
\(\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{2} \mathrm{PO}_{4}^{-}>\mathrm{HPO}_{4}{ }^{2-}\)
Increased strengths with increasing \(K_{\mathrm{a}}\) values \(\checkmark\)
Molar mass of \(\mathrm{Na}_{2} \mathrm{HPO}_{4}=142 \mathrm{~g} \mathrm{~mol}^{-1}\)
amount of \(\mathrm{Na}_{2} \mathrm{HPO}_{4}=4.26 / 142=0.03 \mathrm{~mol}\)
e.c.f. mass/molar mass
volume of \(\mathrm{H}_{3} \mathrm{PO}_{4}\) needed \(=0.03 \times 1000 / 0.5=60 \mathrm{~cm}^{3} \checkmark\)
e.c.f. moles \(\mathrm{Na}_{2} \mathrm{HPO}_{4} \times 1000 / 0.5\)
amount of \(\mathrm{NaOH}=2 \times 0.03=0.06 \mathrm{~mol}\)
e.c.f. \(2 \times\) moles \(\mathrm{Na}_{2} \mathrm{HPO}_{4}\)
volume of NaOH needed \(=0.06 \times 1000 / 0.5=120 \mathrm{~cm}^{3} \checkmark\)
e.c.f. moles \(\mathrm{NaOH} \times 1000 / 0.5\)
```
Penalise units once. \& [1]

[5] \\
\hline \& \& Total: 13 \\
\hline
\end{tabular}

