Question	Expected Answers	Marks
1(a)	From orange to green (accept green/blue but not blue)	2
(b) (i)	Diagram to show Salt bridge Voltmeter Solution containing both Cr ₂ O ₇ ²⁻ and Cr ³⁺ Platinum electrode	1 1 1 1
(ii)	Pressure 101 kPa/1 Atm/100kPa Temperature 298K/25 ^o C Concentration of each solution 1 mol.dm ⁻³	1 1 1
(C)	$3H_2 + Cr_2O_7^{2^-} + 8H^* \rightarrow 2Cr^{3^+} + 7H_2O$ Correct species both sides Balancing (do not allow if electrons or H ⁺ not cancelled)	1
(d)	Equilibrium involving $Cr_2O_7^{2-}$ moves to RHS Therefore SEP more positive or $Cr_2O_7^{2-}$ gains electrons more readily / is more easily reduced / becomes a better oxidising agent	1
		Total:13

Question	Expected Answers	Marks
2 (a)	$M_r NH_4 VO_3 = 116.9$ (accept 117)	1
	Number of moles = 2.23 / 116.9 = 0.0191	1
	Accept 0.02 for 1 mark only	
(D)	Support dioxide is toxic (do not allow	1
	hazardous/harmiui/intant uniess quaimed)	
(c) (i)	1.01×10^{-3}	1
		•
(ii)	$38.1 \times 0.02 = 7.62 \times 10^{-4}$	1
	1000	
(iii)	$\frac{1.91 \times 10^{-3}}{10^{-3}} = 2.5$	1
	7.62 x 10 ⁻⁴	
(d)		
(0)	Thoi manganate (VII) changes US by 5 to change US of 2.5	1
	Therefore vanadium in solution X changes OS by 2	1
	Therefore variadium in solution × changes 00 by 2	
(e)	Not all sulphur dioxide is removed	1
	Sulphur dioxide reacts with manganate (VII)	1
(5)		
(1)	As a catalyst	
	In the Contact Process	
		Total: 12

Question	Expected Answ	Marks		
3 (a)	Formula	Co-ordination number	0.S.	
	[Ni(H ₂ O) ₆] ²⁺	6	+2	2
	CuCl₂⁻	2	+1	2
(b)	Both types of i arrangement i Cis – trans: Suitable ligand 2 diagrams correctly label Optical: Non-superimp Rotate (plane) Need for corre arranged tetra 2 diagrams correct charge QWC The res must contain a following list: Stereoisomer bidentate, liga	isomerism involve fixed g n space/both are stereois ds with correct formulae led cis and trans oosable mirror images) polarised light ect formula bidentate liga ahedrally / any other asyn es on all formulae ponse must be well orga a minimum of 3 technical ism, non-superimposable and, plane polarised, asyn	nd / 4 different ligands nmetric complex nised and logical. It terms from the o, mirror images, mmetric, chiral,	1 1 2 1 1 1 1 1 2 1 Max 9 for (b)
			-	1
				Total: 14