Question	Expected Answers	Marks
1(a)	From orange to green (accept green/blue but not blue)	2
(b) (i)	Diagram to show Salt bridge	
	Voltmeter	1
	Solution containing both $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and Cr^{3+}	1
	Platinum electrode	1
(ii)	Pressure 101 kPa/1 Atm/100kPa Temperature $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$	1
	Concentration of each solution 1 mol. dm^{-3}	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	$3 \mathrm{H}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ Correct species both sides Balancing (do not allow if electrons or H^{+}not cancelled)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d)	Equilibrium involving $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ moves to RHS Therefore SEP more positive or $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ gains electrons more readily / is more easily reduced / becomes a better oxidising agent	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
		Total:13

Question	Expected Answers	Marks
2 (a)	$\mathrm{M}_{\mathrm{r}} \mathrm{NH}_{4} \mathrm{VO}_{3}=116.9$ (accept 117)	1
	Number of moles $=2.23 / 116.9=0.0191$	1
(b)	Sulphur dioxide is toxic (do not allow hazardous/harmful/irritant unless qualified)	1
(c) $\begin{aligned} & \text { (i) } \\ & \text { (ii) }\end{aligned}$	1.91×10^{-3}	1
	$\frac{38.1 \times 0.02}{1000}=7.62 \times 10^{-4}$	1
(iii)	$\frac{1.91 \times 10^{-3}}{7.62 \times 10^{-4}}=2.5$	1
(d)	1 mol manganate (VII) changes OS by 5 to change OS of 2.5 moles of vanadium Therefore vanadium in solution X changes OS by 2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(e)	Not all sulphur dioxide is removed Sulphur dioxide reacts with manganate (VII)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(f)	As a catalyst In the Contact Process	
		Total: 12

Question	Expected Answers	Marks
4 (a)	A redox reaction involves oxidation and reduction Chooses: $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$ Identify species oxidised and reduced by use of oxidation numbers or electron transfer	1
(b)	Chooses: $\mathrm{CoCl}_{4}^{2-}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2-}+4 \mathrm{Cl}^{-}$ Replacement of existing ligand By a stronger ligand $/$a different ligand present in higher concentration Allow stepwise replacement of one ligand by another for 2	1
	marks	1

