Question	Expected answers	Marks	Additional
1 (a)	Correct electronic structures magnesium either 8 electrons in outer shell or none and oxide with 8 electrons in the outer shell (1); Correct charge on the ions, Mg ²⁺ and O ²⁻ (1)	2	Allow all dots or all crosses Allow diagrams that show the movement of electrons from magnesium to oxygen but electrons must not be shown twice Ignore inner shells
(b) (i)	Correct 'dot-and-cross' diagram showing two double covalent bonds shown to each oxygen atom and a lone pair on sulphur (1)	1	Allow dative bonds between sulphur and oxygen
(ii)	Any three from V-shaped / bent / non-linear (1); Bond angle of between 120-110° (1); Idea of electron pairs repel one another (1): Extra repulsion from the lone pair to explain bond angle less than 120° / three 'electron pairs repelling (equally) to explain an angle of 120° (1)	3	Not bonds or atoms repelling Allow ecf from wrong dot-and- cross diagram in (b) (i) Correct shape (1) Correct bond angle (1) Idea of electron pair repelling (1) Comment about number of electron pairs or lone pair (1) If no dot and cross diagram drawn in (b) (i) then the only marks allowed will be the correct shape of SO ₂

Question	Expected answers	Marke	Additional
		Warks	Additional
4 (0)		ļ	guidance
1 (C)	MgO - Strong (electrostatic) attraction between (positive and negative) ions / strong ionic bonds / strong giant ionic (lattice) (1); SO ₂ - Weak intermolecular force / weak van der Waals forces / weak permanent dipole-dipole interaction (1)	2	The nature of the attractive force must be stated as well as an indication of the strength of the attraction Allow MgO is giant ionic and SO_2 is a simple molecule (1) if no other marks have
(d) (i)	Magnesium hydroxide / Mg(OH), (1)	1	Deen awalueu
(ii)	$SO_{2} + H_{2}O \rightleftharpoons H_{2}SO_{3} / SO_{2} + H_{2}O \rightleftharpoons H^{+} + HSO_{3}^{-} / SO_{2} + H_{2}O \rightleftharpoons 2H^{+} + SO_{3}^{2-} (1)$	1	Allow arrow or equilibrium symbol Ignore state symbols
(iii)	X is basic and Y is acidic / solution of X contains hydroxide ion and solution of Y contains hydrogen ions / Y can donate protons and X can accept them / it is an acid-base reaction / idea of neutralisation (1)	1	Allow an equation showing a correct reaction Allow an alkali- acid reaction Ignore makes a salt
		Total = 11	

Question		on	Expected answers	Marks	Additional
					guidance
2	(a)		Octahedral shape with some indication of three dimensions (1); Bond angle 90° (1) $\left[\begin{array}{c}H_2O\\H_2O\\H_2O\\H_2O\\H_2O\end{array}\right]^{3+}$	2	guidance Allow use of wedges and dotted lines to indicate three dimensions Allow three dimensions if at least two bond angles of 90° are shown that clearly demonstrate 3D If two different bond angles do not award bond
					angle mark
	(b)		Lone pair on oxygen / electron pair on oxygen (1); Donated to the (central) metal (ion) (1) Or	2	Allow water is an electron pair donor Allow metal (ion) is an electron pair
			A dative bond exists between water and the central metal (ion) (1) and if electron pair comes from oxygen (1)		acceptor Allow marks from a diagram
	(c)	(i)	All Points plotted correctly (1);	2	Allow to nearest
		(ii)	13.0 - 13.6 (1)	1	Unit not needed Allow ecf from incorrect graph
		(iii)	Answer to part (ii) $\times 10^{-3} \times 0.0500$ (1)	1	Allow ecf
		(iv)	20 – Answer to part (ii)	1	
		(v)	Answer to part (iv) $\times 10^{-3} \times 0.100$ (1)	1	Allow ecf
		(vi)	x = 1 and $y = 5(1)$	1	Allow ecf of x and y that add up to 6
	(d)	(i)	Moles of K = 0.014, Fe = 0.0035, C = 0.021 and N = 0.021 / molar ratio is K:Fe:C:N is 14:3.5:21:21 (1); $K_4Fe(CN)_6 / K_4FeC_6N_6$ (1)	2	Ignore order of atoms in the formula
		(ii)	$[Fe(CN)_{6}]^{4} (1)$	1	Allow Fe(CN) ₆ ⁴⁻ / FeC ₆ N ₆ ⁴⁻
				Total = 14	

Question		on	Expected answers	Marks	Additional guidance
3	<u>(a)</u>		Silver (1)	1	
	(b)		0.0071 (g) (1)	1	
	(c)	(i)	Ag + CuCl ₂ \rightarrow AgCl + CuCl (1)	1	
		(ii)	Oxidation because oxidation state of silver changes from 0 to +1 (1); Reduction because oxidation state of copper changes from +2 to +1 (1)	2	Allow ecf from wrong equation
	(d)	(i)	(1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁹ (1)	1	
		(ii)	Copper(II) ions have an incomplete set of 3d electrons / partially filled d (sub) shell / partially filled d orbital (1)	1	
				Total = 7	

l

Question	Expected answers	Marks	Additional guidance
4		12	Definition maximum of two marks Factors maximum of four marks Decomposition maximum of six marks – marks can either come from the polarisation explanation or lattice enthalpy explanation but not both
	Definition – maximum of two marks The enthalpy change that accompanies the formation of one mole of a solid (compound) (1); from its constituent gaseous ions (1)		Allow marks from an equation Allow energy released / energy change Not energy required Allow ionic compound / salt
	Factors – maximum of four marks As ionic charge increases it becomes more exothermic / ora(1); Since there will be a stronger (electrostatic) attraction between the (positive and negative) ions / ora (1); As ionic radius decreases becomes more exothermic / ora (1); Since the ions become closer together / ora (1); so the (positive and negative) ions are more strongly attracted to one another / aw (1)		Allow lattice enthalpy becomes larger if it is clear from the definition that lattice enthalpy is exothermic / ora

ř

Question	Expected answers	Marke	Additional
		mains	auidanco
4	Decomposition – Maximum of six marks	<u> </u>	Allow either a
	$MCO_3 \rightarrow MO + CO_2$ (where M = Mq. Ca etc.) (1):		or one with a
	Ease of decomposition decreases as the atomic number		specific group 2
	of the group 2 element increases / decomposition		metal
	temperature increases / aw (1):		Allow smaller
	Down the group the positive ion has a greater ionic		charge density of
	radius (1):		M^{2+} down the
	But the ions have the same charge / formulae of at least		aroun (1) if no
	two ions with 2+ (1):		reference to ionic
			radius or charge
			on ion
			Not charge
			density of M /
			charge on
			magnesium atom
			/ atomic radii
	Polarisation approach		
	Idea that decomposition of the carbonate is related to		If one of these
	polarisation (by cation) (1)		has a comparison
	Idea that polarisation means a distortion of the CO_3^2		then it scores an
	electron cloud / aw (1);		extra mark e.g.
	Idea that the distortion or polarisation weakens carbon		e.g. Mg ²⁺ is more
	oxygen covalent bond within the carbonate ion (1)		polarising than
	OP		Ca ²⁺ (1)
	UR .		Allow marks from
	l attice enthalow anoroach		suitable diagrams
	Lattice enthalpy approach		
	become less exothermic down the group / org (1):		Allow lattice
	Rate of decrease of the lattice energy of the oxido is		eninalpy
	much more than that for the carbonate / lattice enthalow		
	of oxide is the driving force for the decomposition / aw		that it is
	(1);		exothermic
	Correct energy cycle for decomposition (1):		CAUGHTING
	This means that the enthalpy change for the		
	decomposition is less endothermic the higher the metal		
	is in the group (1)		

Question	Expected answers	Marks	Additional guidance
4	QWC One mark for the use of technical terms (1) Award one mark if candidate has illustrated answers with 3 correct and appropriate scientific terms from the following list charge density polarisation / polarised / polarising cation anion exothermic electrostatic covalent distortion electron cloud	1	Ring the technical words and put the tick by the QWC mark total
		Total	
		= 13	