1. (a) (i) Br⁻(aq) 1st order ✓

[Br⁻(aq)] triples rate triples ✓

[2]

H⁺(aq) 2nd order ✓ [H⁺(aq)] doubles rate quadruples ✓

[2]

 $BrO_3^-(aq)$ 1st order \checkmark [BrO₃⁻(aq)] doubles rate doubles \checkmark

[2]

(ii) rate = $k[Br^{-}(aq)][H^{+}(aq)]^{2}[BrO_{3}^{-}(aq)]$ (state symbols **not** needed)

[1]

(iii)

$$k = \frac{\text{rate}}{[\text{Br}^{-}(\text{aq})][\text{H}^{+}(\text{aq})]^{2}[\text{BrO}_{3}^{-}(\text{aq})]} = \frac{1.2 \times 10^{-3}}{0.1 \times 0.1^{2} \times 0.1} \checkmark =$$

rate constant, $k:= 12 \checkmark$ units: dm⁹ mol⁻³ s⁻¹ \checkmark (0.0833 would score 1 mark)

[3]

(b) (i) slowest step√

[1]

(ii) rate equation shows reaction is 1st order wrt HBr and 1st order wrt O₂ ✓which corresponds to molecules in step 1 ✓

(iii) 4HBr + $O_2 \longrightarrow 2Br_2 + 2H_2O \checkmark$

[1]

[2]

[Total: 14]

2. (a) decrease temperature ✓ exothermic direction ✓ increase pressure ✓ favours side with fewer molecules ✓

[4]

(b) (i) The contribution of a gas to the pressure in a gas mixture / mole fraction x total pressure ✓

[1]

(ii)

$$K_p = \frac{p \operatorname{COCl_2(g)}}{p \operatorname{CO(g)} \times p \operatorname{Cl_2(g)}} \checkmark \checkmark$$

If any [] then only \checkmark for K_p expression

If upside down with no concentration terms [], ✓ only

$$K_p = \frac{4.13 \times 10^{-5}}{2.5 \times 10^{-6} \times 2.5 \times 10^{-6}} = 6.6 \times 10^6 \checkmark Pa^{-1}$$

If expression is upside down, then answer consequentially is 1.51×10^{-7} .

[3]

(c) (i)

C=O dipole \checkmark ; δ - on chlorines \checkmark

C=O dipole shown correctly on one structure without any contradiction scores 1 mark

[2]

(ii) A has 2 δ - / A has 2 electronegative atoms / A has more electronegative elements than B \checkmark

COCl₂ is symmetrical / A is not symmetrical ✓

dipoles cancel in COCl₂ ✓

3 marking points gives [2] max

(iii)
$$COCl_2 + 2H_2O \longrightarrow H_2CO_3 + 2HCI \checkmark \checkmark$$

OR

 $COCl_2 + H_2O \longrightarrow CO_2 + 2HCI \checkmark \checkmark$

OR

 $COCl_2 + H_2O \longrightarrow O=COHCI + HCI \checkmark$

[2]

[Total: 14]

3. (a) (i) $H_2 + Cl_2 \longrightarrow 2HCl \checkmark$

[1]

(ii) $C_6H_{14} + CI_2 \longrightarrow C_6H_{13}CI + HCI \checkmark$

[1]

(b) (i) moles HCl = $8 \times 15 = 120 \text{ mol } \checkmark$ volume HCl(g) = $120 \times 24 = 2880 \text{ (dm}^3) \checkmark$

[2]

(ii) solution must be diluted by 8.00/0.0200 = 400 times ✓
To 2.50 cm³ of 8.00 mol dm⁻³ HCl✓ add sufficient water to make 1 dm³ of solution.

[2]

(iii) pH= $-\log[H^{+}] \checkmark = 1.70 \checkmark$

[2]

(c) (i) Final pH is approx 11 / equivalence point <7 ✓

[1]

(ii) volume of NH₃(aq) that reacts is 15 cm³ \checkmark amount of HCl used = 0.0200 x 20.00/1000 = 4 x 10⁻⁴ concentration of NH₃(aq) = 4 x 10⁻⁴ x 1000/15 = 0.0267 mol dm⁻³ \checkmark

[2]

(iii) chlorophenol red ✓
pH range coincides with pH change during sharp rise OR pH 4-7 /
coincides with equivalence point ✓

[2]

[Total: 13]

4. (a) A solution that minimises changes in pH (after addition of acid/alkali) ✓

equilibrium: HCOOH ⇒ HCOO⁻ + H⁺

/ HCOOH and HCOO⁻/ weak acid and its conjugate base ✓

HCOOH reacts with added alkali / HCOOH + OH → H₂O + COO →

added alkali reacts with $H^+/H^+ + OH^- \longrightarrow H_2O\checkmark$

→ HCOO⁻ / Equilibrium moves to right (to counteract change) ✓

HCOO⁻ reacts with added acid or H⁺ ✓

 \longrightarrow HCOOH / Equilibrium moves to left (to counteract change) \checkmark

[6]

gwc: communicates in terms of relevant equilibrium ✓ [1]

(b) For a buffer, $K_a = [H^+] \times [HCOO^-]/[HCOOH] \checkmark$

 $[H^{+}] = K_a \times [HCOOH]/[HCOO^{-}] = 1.6 \times 10^{-4} \times 1/2.5 = 6.4 \times 10^{-5} \text{ mol dm}^{-3} \checkmark$

$$pH = -log[H^{+}] = -log(6.4 \times 10^{-5}) = 4.19 / 4.2 \checkmark$$

OR

 $pH = pK_a - log [HCOOH]/[HCOO^-] \checkmark$

 $pK_a = 3.8 \checkmark$

$$pH = 3.8 + 0.4 = 4.2 \checkmark$$

NOTES

3.19 worth ✓✓ (incorrect power of 10)

3.4 worth ✓✓ (use of [HCOOH]/[HCOO⁻])

[3]

[Total: 10]

5.

Ca : C : O
= 31.3/40.1 : 18.7/12 : 50.0/16
$$\checkmark$$

= 0.78 : 1.56 : 3.125
= 1 : 2 : 4
Empirical formula of $\mathbf{Y} = \text{CaC}_2\text{O}_4 \checkmark$

[2]

mass of Ca in kidney stone = $2 \times 31.3/100 = 0.626 \text{ g} \checkmark$ moles of Ca in kidney stone = $0.626/40.1 = 0.0156 \text{ mol } \checkmark$ number of Ca²⁺ ions removed = $6.02 \times 10^{23} \times 0.0156 = 9.39 \times 10^{21} \text{ ions } \checkmark$ $0.0156 \text{ mol Ca is } 2 \text{ marks } (\text{molar mass } 128.1 \text{ g mol}^1)$

OR

moles of Ca = $2/128.1 \checkmark = 0.0156$ mol \checkmark number of Ca²⁺ ions removed = $6.02 \times 10^{23} \times 0.0156 = 9.39 \times 10^{21}$ ions \checkmark For consequential marking of last point, must be evidence of **moles** \times L

[3]

Molecular formula of $X = H_2C_2O_4 \checkmark$ Structural formula = (COOH)₂ \checkmark

[2]

Oxalic acid forms hydrogen bonds with water ✓ 2 x O–H in structure / 2 x COOH groups / no hydrocarbon chain / diagram showing at least 2 H bonds with water per oxalic acid molecule ✓

[2]

[Total: 9]