1. (a) (i) $\mathrm{Br}^{-}(\mathrm{aq})$ 1st order \checkmark [$\left.\mathrm{Br}^{-}(\mathrm{aq})\right]$ triples rate triples \checkmark
$\mathrm{H}^{+}(\mathrm{aq}) \quad$ 2nd order \checkmark $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ doubles rate quadruples \checkmark
[2]
$\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \quad$ 1st order \checkmark $\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right]$ doubles rate doubles
(ii) rate $=k\left[\mathrm{Br}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right] \checkmark \quad$ (state symbols not needed)
(iii)
$k=\frac{\text { rate }}{\left[\mathrm{Br}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}\left[\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})\right]}=\frac{1.2 \times 10^{-3}}{0.1 \times 0.1^{2} \times 0.1} \checkmark=$
rate constant, $k:=12 \checkmark \quad$ units: $\mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1} \checkmark$
(0.0833 would score 1 mark)
(b) (i) slowest step \checkmark
(ii) rate equation shows reaction is 1 st order wrt HBr and 1st order wrt $\mathrm{O}_{2} \checkmark$ which corresponds to molecules in step 1
(iii) $4 \mathrm{HBr}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$
2. (a) decrease temperature \checkmark exothermic direction \checkmark
increase pressure \checkmark favours side with fewer molecules \checkmark
(b) (i) The contribution of a gas to the pressure in a gas mixture / mole fraction x total pressure \checkmark
(ii)

$$
K_{p}=\frac{p \mathrm{COCl}_{2}(\mathrm{~g})}{p \mathrm{CO}(\mathrm{~g}) \times p \mathrm{Cl}_{2}(\mathrm{~g})}
$$

If any [] then only \checkmark for K_{ρ} expression If upside down with no concentration terms [], \checkmark only

$$
K_{p} \quad=\frac{4.13 \times 10^{-5}}{2.5 \times 10^{-6} \times 2.5 \times 10^{-6}}=6.6 \times 10^{6} \checkmark \mathrm{~Pa}^{-1}
$$

If expression is upside down, then answer consequentially is 1.51×10^{-7}.
(c) (i)

A

B
$\mathrm{C}=\mathrm{O}$ dipole $\checkmark ; \delta$ - on chlorines
$\mathrm{C}=\mathrm{O}$ dipole shown correctly on one structure without any contradiction scores 1 mark
(ii) A has 2δ - / A has 2 electronegative atoms / A has more electronegative elements than \mathbf{B}
COCl_{2} is symmetrical / \mathbf{A} is not symmetrical \checkmark
dipoles cancel in $\mathrm{COCl}_{2} \checkmark$
3 marking points gives [2] max
(iii)

$$
\mathrm{COCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \checkmark \checkmark
$$

OR

$$
\mathrm{COCl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{HCl} \checkmark \checkmark
$$

OR

$$
\mathrm{COCl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}=\mathrm{COHCl}+\mathrm{HCl} \checkmark
$$

[Total: 14]
3. (a) (i) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl} \checkmark$
(ii) $\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}+\mathrm{HCl} \checkmark$
(b) (i) moles $\mathrm{HCl}=8 \times 15=120 \mathrm{~mol} \checkmark$ volume $\mathrm{HCl}(\mathrm{g})=120 \times 24=2880\left(\mathrm{dm}^{3}\right)^{\checkmark}$
(ii) solution must be diluted by $8.00 / 0.0200=400$ times \checkmark

To $2.50 \mathrm{~cm}^{3}$ of $8.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ add sufficient water to make $1 \mathrm{dm}^{3}$ of solution.
(iii) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \checkmark=1.70 \checkmark$
(c) (i) Final pH is approx 11 / equivalence point <7
(ii) volume of $\mathrm{NH}_{3}(\mathrm{aq})$ that reacts is $15 \mathrm{~cm}^{3} \checkmark$ amount of HCl used $=0.0200 \times 20.00 / 1000=4 \times 10^{-4}$ concentration of $\mathrm{NH}_{3}(\mathrm{aq})=4 \times 10^{-4} \times 1000 / 15=0.0267 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$
(iii) chlorophenol red \checkmark
pH range coincides with pH change during sharp rise $\mathrm{OR} \mathrm{pH} 4-7$ /
coincides with equivalence point \checkmark
4. (a) A solution that minimises changes in pH (after addition of acid/alkali) \checkmark
equilibrium: $\mathrm{HCOOH}=\mathrm{HCOO}^{-}+\mathrm{H}^{+}$
$/ \mathrm{HCOOH}$ and $\mathrm{HCOO}^{-} /$weak acid and its conjugate base \checkmark

HCOOH reacts with added alkali $/ \mathrm{HCOOH}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{COO}^{-} /$
added alkali reacts with $\mathrm{H}^{+} / \mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$
$\longrightarrow \mathrm{HCOO}^{-}$/ Equilibrium moves to right (to counteract change) \checkmark
HCOO^{-}reacts with added acid or $\mathrm{H}^{+} \checkmark$
$\longrightarrow \mathrm{HCOOH} /$ Equilibrium moves to left (to counteract change) \checkmark
qwc: communicates in terms of relevant equilibrium $\checkmark[1]$
(b) For a buffer, $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]$
$\left[\mathrm{H}^{+}\right]=K_{a} \times[\mathrm{HCOOH}] /[\mathrm{HCOO}]=1.6 \times 10^{-4} \times 1 / 2.5=6.4 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(6.4 \times 10^{-5}\right)=4.19 / 4.2 \checkmark$
OR

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log [\mathrm{HCOOH}]\left[\mathrm{HCOO}^{-}\right] \\
& \mathrm{pK} \mathrm{~K}_{\mathrm{a}}=3.8 \\
& \mathrm{pH}=3.8+0.4=4.2
\end{aligned}
$$

NOTES
3.19 worth $\checkmark \checkmark$ (incorrect power of 10)
3.4 worth $\checkmark \checkmark$ (use of $[\mathrm{HCOOH}] /[\mathrm{HCOO}]$)
5.

	Ca	$:$	C	\vdots
$=$	$31.3 / 40.1$	\vdots	$18.7 / 12$	0
$=$	0.78	\vdots	1.56	$50.0 / 16 \checkmark$
$=$	1	\vdots	2	3.125
Empirical formula of $\mathrm{Y}=\mathrm{CaC}_{2} \mathrm{O}_{4} \checkmark$	4			

mass of Ca in kidney stone $=2 \times 31.3 / 100=0.626 \mathrm{~g} \checkmark$
moles of Ca in kidney stone $=0.626 / 40.1=0.0156 \mathrm{~mol} \checkmark$
number of Ca^{2+} ions removed $=6.02 \times 10^{23} \times 0.0156=9.39 \times 10^{21}$ ions \checkmark 0.0156 mol Ca is 2 marks (molar mass $128.1 \mathrm{~g} \mathrm{~mol}^{1}$)

OR
moles of $\mathrm{Ca}=2 / 128.1 \checkmark=0.0156 \mathrm{~mol} \checkmark$
number of Ca^{2+} ions removed $=6.02 \times 10^{23} \times 0.0156=9.39 \times 10^{21}$ ions \checkmark
For consequential marking of last point, must be evidence of moles $\times L$

Molecular formula of $\mathbf{X}=\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \checkmark$
Structural formula $=(\mathrm{COOH})_{2}$

Oxalic acid forms hydrogen bonds with water \checkmark
$2 \times \mathrm{O}-\mathrm{H}$ in structure / $2 \times \mathrm{COOH}$ groups / no hydrocarbon chain / diagram showing at least 2 H bonds with water per oxalic acid molecule \checkmark

