Question	Expected answers	Marks
1 (a)	Correct oxidation states for each atom i.e. $Ca = +2$, $C = +4$ and	2
	O = -2 (1);	
	Oxidation numbers do not change during the reaction / no	
(b)	electron transfer during reaction (1)	
(b)	MgCO ₃ decomposition easier than CaCO ₃ / higher	3
	decomposition temperature with CaCO ₃ / ora (1);	
	Mg ²⁺ higher charge density than Ca ²⁺ / both have the same	
	charge but Mg ²⁺ has a smaller ionic radius (1);	
	(1),	
	So Mg ²⁺ will polarise CO ₃ ²⁻ more than Ca ²⁺ can / more distortion	
(-)	of the CO ₃ ^{2*} electron cloud by Mg ^{2*} (1)	
(c)	$\Delta H = +1207 + (-635) + (-393) / \text{ correct energy cycle drawn } /$	2
	$\Delta H_{\rm f}$ product – $\Delta H_{\rm f}$ reactants (1);	
	A**	
(4)	$\Delta H = +179 \text{ (kJ mol}^{-1})(1)$ $Mg^{2^{+}} + O^{2^{-}} \rightarrow MgO (1);$	
(d)	$Mg^{-} + O^{-} \rightarrow MgO(1);$ (2016 k.l. of) apparent is released (4):	3
	(3916 kJ of) energy is released (1);	
	when one mole of solid magnesium oxide is made from its	
	constituent gaseous ions (1)	
(e) (i)	Enthalpy change of atomisation (of oxygen) (1)	1
(ii)	Any two from	2
	Mg ⁺ has one more proton than electrons / same number of	
	protons but one fewer electron (1);	
	Electron is lost from a particle that carries an overall positive	
	charge (rather than being neutral) (1);	
	So (outer) electron more firmly attracted to the nucleus (1)	
(iii)	Correct energy level diagram labelled with correct formulae /	4
` ,	correct cycle labelled with correct formulae (1);	4
	,	
	Any two from	
	Correct state symbols (1);	
	Correct energy values shown in the Born-Haber cycle (1)	
	contest chergy values shown in the Born-Haber cycle (1)	
	Correct labels for the enthalpy changes (1)	
	, , stanges (t)	
	And	
	Lattice enthalpy = -735 +(-1445) + (-150) + (-878) + 141 + (-247)	
	+ (-602) (1)	
(f)	Furnace lining / aw (1)	1
		Total =
	t e e e e e e e e e e e e e e e e e e e	

Que	stion	Expected answers	Marks
2 (a	a)	Have variable oxidation states / aw (1);	2
		(Elements or compounds are) often catalysts (1)	
(t	o) (i)	$Cu^{2+}(aq) + 2OH(aq) \rightarrow Cu(OH)_2(s) /$	1
		$[Cu(H_2O)_6]^{2^+}(aq) + 2OH(aq) \rightarrow Cu(OH)_2(s) + 6H_2O(l) /$	
		$[Cu(H_2O)_6]^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_2(H_2O)_4(s) + 2H_2O(l)$	
(t	o) (ii)	Colorimeter needs a clear solution / precipitate will interfere with	1
		the passage of light / precipitate may absorb light / colorimeter	
		has been set up to measure the concentration of just the	
		complex ion (1)	
(0	c)	Points plotted correctly (1);	2
ļ		Two straight lines of best fit that intersect (1)	
(0	d) (i)	0.0025 (1)	1
	(ii)	10 (cm ³)	1
	(iii)	Answer to part (ii) x 10 ⁻³ / 0.010 (1)	1
	(iv)	x = 4 and $y = 2(1)$	1
(6	e) (i)	Has a lone pair / it is an electron pair donor (1)	1
	(ii)	Lone pair in the ammonia ligand is more like a bond (pair)	2
		ammonia ligand has four bond (pairs) (1);	
		So equal repulsion between all four electron pairs or bonds with	
		the ligand / extra repulsion due to presence of lone-pair in	
(f) (i)	ammonia / aw (1) $[Cu(H_2O)_6]^{2^+}$ + 4Cl ⁻ → $[CuCl_4]^{2^-}$ + 6H ₂ O /	1
(1) (1)	$ [Cu(H_1O)_1]^{2+} + 4HCl \rightarrow [CuCl_1]^{2-} + 6H_1O + 4H^+ /$	•
		$[Cu(H_2O)_6]^{2^+} + 4HCl \rightarrow [CuCl_4]^{2^-} + 6H_2O + 4H^+ / Cu^{2^+} + 4HCl \rightarrow CuCl_4^{2^-} + 4H^+$	
<u> </u>	(ii)	Tetrahedral shape with either wedges or correct bond angles /	1
	()	square planar shape (1)	•
			Total =

Question	Expected answers	Marks
3	Any eleven from	12
	Sodium oxide / magnesium oxide	
	Magnesium oxide has a (giant) ionic structure (1);	
	(so it has a) high melting point (1);	
	(because there is a) strong interaction between the positive ions	
	and the negative ions / because there is a strong electrostatic	
	attraction between ions (1);	
	Aluminium oxide	
	Aluminium oxide has ionic bonding with a high degree of	
	covalent character / polar covalent bonding / intermediate	
	bonding (1);	
	It has a giant structure (1);	
	(So it has a) high melting point (1);	
	Sodium oxide / magnesium oxide / aluminium oxide	
	Do not conduct electricity as a solid since its ions are not free to	
	move (1);	!
	But will conduct electricity as a molten liquid because the ions	
	are free to move (1);	
	Silicon dioxide	
	Giant molecular / giant covalent (1);	
	High melting point (1);	
	(because) it has many strong covalent bonds / aw (1);	
	Does not conduct electricity (1)	
	(because there are) no free electrons / all electrons localised in covalent bonds (1);	
	Sulphur dioxide / sulphur trioxide	
	Sulphur dioxide has a simple molecular structure / simple	
	covalent (1);	
	(so it has a) low melting point (1);	
	(because) molecules are held together by weak intermolecular	
	forces / van der Waals forces (1);	
	Sulphur dioxide does not conduct electricity (1);	ļ
	(because there are) no free electrons / all electrons localised in	
	covalent bonds (1);	ļ

Question	Expected answers	Marks
Question 3	Reaction with water Magnesium oxide is basic / magnesium oxide reacts with water to form an alkaline solution / magnesium oxide is slightly soluble in water giving a basic solution (1); (because) oxide ions react with water to give hydroxide ions / O²- + H₂O → 2OH / MgO + H₂O → Mg(OH)₂(1); Aluminium oxide is amphoteric / aluminium oxide does not react / does not dissolve in water (1); (because the) lattice enthalpy is too high /aw (1); Silicon dioxide does not dissolve in water (1); Silicon dioxide is an acidic oxide / sulphur dioxide reacts with water to form an acidic solution (1); Sulphur dioxide is an acidic oxide / sulphur dioxide reacts with water to form an acidic solution (1); SO₂ + H₂O → H₂SO₃ (1); (Since) covalent oxides are acidic oxides (1)	Marks
	And QWC – award one mark if the question has been addressed with no significant omissions and the candidate has illustrated answers with correct and appropriate scientific terms (1)	T-4-1-
		Total = 12