Marking structures in organic chemistry

When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. CH_{3}, $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{OH}, \mathrm{COOH}, \mathrm{COOCH}_{3}$) to unambiguously define the arrangement of the atoms. (E.g. $\mathrm{C}_{3} \mathrm{H}_{7}$ would not be sufficient).

If not specified by the question, this may be given as either:

- a structural formula - e.g. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$,

- a skeletal formula - e.g.

- a displayed formula - e.g.

or as a hybrid of these - e.g.
The following errors should be penalised - although each one only loses a maximum of one mark on the paper:
- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms -
e.g.

Benzene rings may be represented as
 as well as
 of the types of formula above.

1 (a) (i) ethanal
(ii) aldehyde / carbonyl
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$ allow displayed formulae, but $\mathrm{CH}_{3} \mathrm{COO}^{-} / \mathrm{CH}_{3} \mathrm{COOAg}^{2} \mathrm{CH}_{3} \mathrm{COOH} \quad$ penalise poor connections to the OH , sticks etc
(b) (i) (nucleophile/CN ${ }^{-}$) is an electron/lone pair donor \checkmark ESSENTIAL MARK then look for the following points:
in the diagram ...
or a written alternative ...
CN^{-}
the nucleophile is CN^{-}
curly arrow clearly starts from a lone pair drawn on the C
curly arrow towards $\mathrm{C}^{\delta+}$ and breaking $\mathrm{C}=\mathrm{O}$
correct structure of the intermediate
the electron/lone pair is donated from the C of the CN^{-}
(nucleophile/ CN^{-}) is attracted to an electron deficient carbon
(nucleophile/ CN^{-}) forms a covalent/dative bond (to the carbon)
correct structure of the product
HCN is added

ANY 4 out of 5
(ii) $\mathrm{HCN} / \mathrm{KCN} / \mathrm{CN}^{-}$is toxic / AW

NOT dangerous or explosive
(iii) Yes, because ..
(the product) has a chiral centre/carbon \checkmark four different groups around the carbon assymetric
cannot be superimposed on its mirror image \checkmark allow ecf from b (i)
ANY 2 out of 4

(iii) halogen carrier \downarrow
(b) (i) peaks identified
peak $\mathbf{X}-\mathrm{CH}_{3}$ (protons)
peak Y - CH (proton)
peak Z - benzene ring (protons) \checkmark
3 identification marks
reasoning from δ value ... for each, either:

- quotes a δ value for the peak and refers explicitly to the Data Sheet /or
- quotes the relevant functional group in the Data Sheet (eg R-CH ${ }_{3}$ for X) /or
- quotes exactly the relevant Data Sheet range, ie ($0.7-1.6$ for X)
(2.3-2.7 for Y)
(7.1-7.7 for Z)

$\checkmark \checkmark \checkmark$
3 reasoning marks

ignore any attempts to reason from the splitting here, but look out for credit to parts (ii) and (iii) if not given below
(ii) 1 proton $/ \mathrm{CH} /$ ' n ' $=1$ (using the $n+1$ rule) on the neighbouring/adjacent carbon \checkmark
(iii) the CH_{3} protons are all equivalent/in the same (chemical) environment / there are six protons adjacent to the $\mathrm{CH} \checkmark$

3 (a) (i)

the correct compound \qquad \checkmark
shown as a correctly displayed formula \checkmark
(ii) yes, because there are four different groups around the central carbon \checkmark (or ecf on the structure given in (i)) AW
allow asymmetric / non-superimposable on its mirror image
(b) infra-red/i.r. (spectroscopy) \checkmark
peak/absorption at 3230-3550 $\left(\mathrm{cm}^{-1}\right) \checkmark$
n.m.r. (spectroscopy)
peak at 3.5-5.5 (ppm) ... \checkmark
... which disappears in $\mathrm{D}_{2} \mathrm{O} \checkmark$
Quality of Written Communication
mark for good organisation / a logical response and technical terms, using at least two of the following words:
infra-red, nuclear magnetic resonance, spectroscopy, wavenumber, cm^{-1}, chemical shift, ppm) \checkmark
(c) (i)dil/conc/(aq) or dil/(aq) or dil/conc/(aq)

$$
\begin{array}{l:l}
\mathrm{HCl} & \text { if a formula given, there must be } \\
\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / a c i d & \text { some indication that it is aqueous } \\
\mathrm{OH}^{-} / \text {alkali } / \mathrm{NaOH} \text { etc } \checkmark & \text { allow an enzyme as long as aq }
\end{array}
$$

(ii)

(iii) amino acids \checkmark

4 (a) carboxylic acid / phenol / amino acid / named example or correct formula \checkmark
equation to give the correct negative ion
$\mathrm{eg} \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$ $/ \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

NOT 'HX' or any inorganic acid
allow ecf on the formula or an inorganic acid from above as long as donation of H^{+}shown
[2]
(b) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-} \checkmark$
do not penalise a correct equation
using H^{+}or another acid
(ii) (base, phenylamine, ethylamine) accepts $\mathrm{H}^{+} \checkmark$ / donates lone pair
(uses the) lone pair on the nitrogen \checkmark
the lone pair (in phenylamine) is delocalised /interacts with the delocalised/ π electrons in the ring
or
inductive effect pulls electrons (from the nitrogen)
allow AW throughout
(or shown on a diagram)

It must be clear which way the electrons are going"
do not allow non-organic acids for the first mark, but give ecf on good explanation
allow any explanation describing acidity and basicity eg "can donate and accept $\mathrm{H}^{+"}$)

5 (a) planar molecule (or shown in diagram) \checkmark

p-orbitals (or shown in diagram)
... overlap (or shown in a diagram) \checkmark
(p-orbital ovelap forms) π-bonds
electrons are delocalised \checkmark
C-C bonds are all the same length \checkmark

ANY 5 out of 6

Quality of Written Communication

mark for spelling, punctuation and grammar. Look for at least two sentences with legible text, accurate spelling, grammar and punctuation, so the meaning is clear \checkmark
(b) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{2} \mathrm{Br} \checkmark$
(ii) phenylethene has a double bond \checkmark
benzene (π) electrons are:
spread out / delocalised / lower electron density
\checkmark ora for 2 marks
then either ...
so the bromine molecule gets less polarised / needs the catalyst to help polarise it ...
and the bromine/electrophile is less strongly attracted (to the π electrons)
ora and AW for $\mathbf{2}$ marks
or ...
(delocalised (π) electrons make) benzene stable . .. \checkmark
so more energy is needed (to overcome it) / higher $\mathrm{E}_{\mathrm{a}} /$ it is not easily disrupted \checkmark
ora and AW for $\mathbf{2}$ marks
TOTAL 2 + 2 marks
(c) (to make) poly(phenylethene) / polymers / plastics / a named use of poly(phenylethene) eg packaging, insulation, toys, moulded casings etc

6 (a) 184

(b) (i) identification of the compounds ...
any type of formula that unambiguously identifies the compound - eg

B

$$
\mathrm{CH}_{3} \mathrm{CHICH}_{2} \mathrm{CH}_{3} \checkmark
$$

C

D and E

F
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ \checkmark

$$
5 \text { marks }
$$

reasoning ...
H can be taken from either carbon 1 or carbon $3 \checkmark$ AW
D and \mathbf{E} are cis-trans/geometric (isomers) \checkmark
double bond does not rotate \checkmark
explanation why but-2-ene gives cis/trans isomers or why but-1-ene doesn't

ANY 3 out of 4 marks
(ii) addition / hydrogenation / reduction \checkmark

7 (a) (i) tin/iron
hydrochloric acid / $\mathrm{HCl} \downarrow$
(ii) M_{r} of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}=123(.0)$ M_{r} of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}=93(.0)$
(use of correct $M_{r} s$ get 2 marks)
theoretical mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}=7.56(\mathrm{~g}) / \mathrm{ecf}$ $/$ moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}=0.08(13) / \mathrm{ecf}$
answer in the range 89.8-90.0(\%) /ecf 3 sf \checkmark (correct answer gets $\mathbf{2}$ more marks)
(b) sodium nitrite + (hydrochloric) acid $/$ nitrous acid / $\mathrm{HNO}_{2} \checkmark \checkmark$
$<10^{\circ} \mathrm{C}$

8 (a) (i) a correct structure for poly(propene), eg

or

bonds must extend outside any brackets
equation showing ' n ' monomers

(ii) addition:
monomer has $\mathrm{C}=\mathrm{C}$ double bond / is an alkene / NOT just "monomer has a double double bond breaks/ no (other) substance lost \checkmark bond"
condensation:
water / small molecule lost \checkmark
(b)

(c) (i)

allow a break in the repeat at any point
at least one correct ester link \checkmark
rest of the structure and repeat also correct \checkmark
(ii) H reacts with $\mathrm{NaOH} /$ poly(propene) does not \checkmark

H is an ester / is polar .. will be hydrolysed by $\mathrm{NaOH} \checkmark$
"hydrolysed by NaOH " gets the reacts with NaOH mark as well poly(propene) is non-polar \checkmark

ANY 3 out of 4 marks:

9 (a)
 $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \checkmark$
: allow poly-nitrated benzene in any positions
(b)
$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{OH}$
(c) two structures made by joining the amino acids

