
(b) (i) propan-2-ol

(ii) NaBH_{4}
(iii) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+2[\mathrm{H}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \checkmark$
(c) 2,4-dinitrophenylhydrazine \checkmark yellow / orange/red ... crystals /solid / ppt. etc \checkmark (re)crystallise / purify \checkmark
measure melting point/m.p. (of product) \checkmark compare with known compounds \checkmark

ANY 4 out of 5

Qu. Expected answers: Marks
2 (a) (i) $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \\ & \text { organic product }\end{aligned} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ rest of the equation also correct \checkmark
[2]
(ii) $\mathrm{FeBr}_{3} / \mathrm{AlBr}_{3}$ / iron(III)bromide / aluminium bromide
(b) (i)

(ii)

organic product \checkmark (allow ecf from (i) but must be a ring with OH)
rest of the equation also correct
(iii) (benzene) ring is activated
lone pair on oxygen is delocalised / interacts with the π electrons more (π) electron density (around ring) attracts bromine / electrophiles more / polarises Br_{2} molecule more \checkmark

ANY 3 marks from 4

$$
\max
$$

(iv) antiseptics / disinfectants
[Total: 11]
Qu. Expected answers:

3 (a) (i) $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{OH}^{-} / \mathrm{H}_{2} \mathrm{O} \checkmark$
(ii) nucleophilic \checkmark substitution
(iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaOH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaCl}$

$$
\mathrm{OH}^{-} \longrightarrow \mathrm{Cl}^{-}
$$

if water in (i), then: $\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HCl}$
(b) (i)
allow either

(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \quad$ allow $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ as the ester
(iii) perfumes / flavourings / solvents \checkmark
(iv) suggested mechanisms could be $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ type (such as the example shown below)

look for diagram or words describing:
nucleophilic \checkmark
substitution / ester $+\mathrm{Cl}^{-}$as products \checkmark
dipole on $\mathrm{C}-\mathrm{Cl}$ bond
curly arrow from COO to $\mathrm{C} \checkmark$
curly arrow from bond to $\mathrm{Cl} \downarrow$

ANY 3 out of 5

(allow anything reasonable producing $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$)

Qu.	Expected answers:	Marks
4	(at a temperature) < $10^{\circ} \checkmark$	[1]
	```(reagent is) nitrous acid \(/ \mathrm{HNO}_{2} \checkmark\) (made by) sodium nitrite / \(\mathrm{NaNO}_{2}\)... ... (with) hydrochloric acid / HCl ... (to give diazonium salt with formula) eg \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+} \equiv \mathrm{N} \mathrm{Cl}\)```	
	balanced equation - e.g. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HNO}_{2}+\mathrm{H}^{+} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$ (any of the other marks above may be awarded if they appear in an equation)	max [4]
	MAX 4 from these 5	
	(used to form) dyes / colourings / coloured compounds $\checkmark$	[1]

Qu. Expected answers:
5 (a) (i)


> [1]
(ii) $\mathrm{CH}_{2}$
(iii)
 [1]

(b) (i) peptide / amide

(ii) condensation
(iii)


[1]
5 (b) (iv) $\mathrm{M}_{\mathrm{r}}$ glycine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}=75$ (0) $\checkmark$
$\mathrm{M}_{\mathrm{r}} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}=132$. $\mathrm{O}_{2}$ -
use of $2: 1$ ratio to give 0.009333 mol of dipeptide $H$ expected / ecf $\checkmark$
(or use of 2:1 ratio to give mass ratio of 150:132 / ecf)
answer in the range 89.2-89.4 with 3 sf / ecf $\checkmark$ (correct answer gets all 4 marks)
(answer in the range 44.6-44.7 (no
2:1) with 3 sf gets 3 marks overall)
(v)


Qu. Expected answers:
6 (a) (i) $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O} \checkmark$
(ii) $M_{r}=108$ so $\mathrm{m} / \mathrm{e}$ of molecular ion $=108$ / ecf from (i) $\downarrow$
(iii) $\% \mathrm{C}=(84.0) /(108) \times 100 \%=77.8 \%$
$\% \mathrm{H}=(8.0) /(108) \times 100 \%=7.4 \%$
$/$ ecf from (i) or (ii)
(b) $K$ has OH group $\checkmark$
(ignore reference to any
$K$ has peak at 3230-3550 $\mathrm{cm}^{-1}$ other bonds)
$L$ does not have OH group / peak at $3230-3550 \mathrm{~cm}^{-1}$
(c) (i) peak at $\delta=7.3 \mathrm{ppm} /$ with area 5 , is due to the benzene ring (protons) peak at $\delta=4.5 \mathrm{ppm} /$ with area 2 , is due to the $-\mathrm{CH}_{2}$ - (protons) peak at $\delta=3.2 \mathrm{ppm} /$ with area 1 , is due to the OH (proton)
(ii) peak at $\delta=3.2 \mathrm{ppm} /$ with area 1 disappears / ecf from (i)
(iii) expect peak at $\delta=7.1-7.7 \mathrm{ppm}$ 5 protons responsible $/$ area $=5$ expect peak at $\delta=3.3-4.3 \mathrm{ppm}$ 3 protons responsible $/$ area $=3$

Qu. Expected answers:
7 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(b) $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
(c) $\quad \mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{Br} \checkmark$
$\mathrm{AlCl}_{3} / \mathrm{FeCl}_{3} / \mathrm{FeBr}_{3}$ etc $\checkmark$
(d) $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \quad \checkmark$
(e) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
(f) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN}$ etc $\checkmark$
(ii) nucleophilic
addition


Look for the following in a diagram as above or description: (dipoles not required)
CN ${ }^{-}$/nucleophile attacks ( $\delta$ )+ carbonyl C / curly arrow from CN to carbonyl C (curly arrow) breaking $\mathrm{C}=\mathrm{O} \downarrow$ correct structure of the intermediate curly arrow from $\mathrm{O}^{-}$to $\mathrm{HCN} / \mathrm{H}_{2} \mathrm{O} \checkmark$

ANY 5 out of the 6 marks above
(curly arrows must be clearly from and to the correct bond / atom to gain the mark)

Qu. Expected answers:
Marks
8 (structural isomerism is) same molecular formula, different structural formulae
two correct structures of suitable example
stereoisomerism (is same structural) formula /order of bonds, different spatial arrangements of the atoms $\checkmark$
(cis-trans / geometric isomerism is due to) non-rotation around a $\mathrm{C}=\mathrm{C}$ double bond $\checkmark$
two correct structures of suitable example
(optical isomerism is when) molecules are nonsuperimposable mirror images / asymmetric / contain a chiral centre
carbon atom is attached to four distinguishable / different groups / atoms /(or shown in diagram) $\checkmark$
(or polymers may be isotactic, atactic or syndiotactic)
(or polymer side chain
on the same, random or alternate sides)
two correct 3-d structures of suitable example $\checkmark$ 8 points on isomerism (3 MAX for optical isomerism / polymers)
(synthesis of only one stereoisomer of a pharmaceutical is good because ...)
... only one of the two stereoisomers may be active /the two isomers may have different activity in the body $\checkmark$
... a smaller dose needed /saves cost of materials/separation $\checkmark$ (ora)
... the other may have (harmful) side effects
good example of stereospecific drug e.g. Thalidomide / Dopa / Ibuprofen $\checkmark$
4 points on chiral synthesis

