Ĺ

Qu.	Expected answers:	Marks
1 (a)	propanone ✓ HOH H_C_C_H H H ✓	[2]
(b) (i)	propan-2-ol ✓	[2]
(ii)	NaBH₄ ✓	[1]
(iii)	C_3H_6O + 2[H] $\longrightarrow C_3H_8O / C_3H_7OH \checkmark$	[1]
(c)	2,4-dinitrophenylhydrazine ✓ yellow / orange/red crystals /solid / ppt. etc ✓ (re)crystallise / purify ✓ measure melting point/m.p. (of product) ✓ compare with known compounds ✓	
	ANY 4 out of 5	max [4]
		[Total: 10]

مر

,

Qu.	Expected answers:	Marks
2 (a) (i)	$C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ organic product \checkmark rest of the equation also correct \checkmark	[2]
(ii)	FeBr ₃ / AlBr ₃ / iron(III)bromide / aluminium bromide	[1]
(b) (i)	Br Br	[2]
(ii)	$\begin{array}{c} \stackrel{O^{-}}{\underset{Br}{\overset{O^{-}}{\overset{H}{\overset{H}}}}} & \stackrel{O^{-}}{\underset{Br}{\overset{H}{\overset{H}}}} & \stackrel{O^{-}}{\underset{Br}{\overset{H}{\overset{H}}}} & \stackrel{H_{2}O}{\underset{Br}{\overset{H}{\overset{H}}}} \\ \text{organic product } \checkmark (\text{allow ecf from (i) but must be a ring with OH}) \\ \text{rest of the equation also correct } \checkmark} \end{array}$	[2]
(iii)	(benzene) ring is <u>activated</u> \checkmark lone pair on oxygen is delocalised / interacts with the π electrons \checkmark more (π) electron density (around ring) \checkmark attracts bromine / electrophiles more / polarises Br ₂ molecule more \checkmark ANY 3 marks from 4	max [3]
(iv)	antiseptics / disinfectants	[1]
		[Total: 11]

10.42

2814

r

the furnished from the building

Sand Libraria

Same and the second second

i Alexandra de

Qu.	Expected answers:	Marks
4	(at a temperature) < 10° ✓	[1]
	(reagent is) nitrous acid / HNO₂ ✓ (made by) sodium nitrite / NaNO₂ … ✓ … (with) hydrochloric acid / HCI ✓ … (to give diazonium salt with formula) eg C₅H₅N₂ ⁺ / C₅H₅N₂CI / C₅H₅N ⁺ ≡N CI ✓	
	balanced equation - e.g. $C_6H_5NH_2$ + HNO_2 + $H^+ \longrightarrow C_6H_5N_2^+$ + $2H_2O \checkmark$	
	(any of the other marks above may be awarded if they appear in an equation)	max [4]
	MAX 4 from these 5	
	(used to form) dyes / colourings / coloured compounds \checkmark	[1]
	ព្	otal: 6]

June 2002

Qu.	Expected answers:	Marks
6 (a) (i)	C ₇ H ₈ O ✓	[1]
(ii)	M _r = 108 so m/e of molecular ion = 108 / ecf from (i) ✓	[1]
(iii)	%C = (84.0)/(108) x 100% = 77.8% ✓	
	%H = (8.0)/(108) x 100% = 7.4% ✓	[2]
	/ ecf from (i) or (ii)	[4]
(b)	K has OH group \checkmark (ignore red K has peak at 3230 - 3550 cm ⁻¹ \checkmark other bone	ference to any ds)
	L does not have OH group / peak at 3230 - 3550 cm⁻¹ ✓	[3]
(c) (i)	peak at δ = 7.3ppm / with area 5, is due to the benzene ring (prot	ons) 🗸
	peak at δ = 4.5ppm / with area 2, is due to the -CH ₂ - (protons)	· · · · · · · · · · · · · · · · · · ·
	peak at δ = 3.2ppm / with area 1, is due to the OH (proton) \checkmark	[3]
(ii)	peak at δ = 3.2ppm / with area 1 disappears / ecf from (i) \checkmark	[1]
(iii) expect peak at $\delta = 7.1-7.7$ ppm \checkmark 5 protons responsible / area = 5 \checkmark	
	expect peak at δ = 3.3-4.3ppm ✓ 3 protons responsible / area = 3 ✓	[4]
		[Total: 15]

1

Qu.	Expected answers:	Marks
7 (a)	CH₃CH₂COOH ✓	[1]
(b)	C₅H₅NO₂ ✓	[1]
(c)	CH₃CI / CH₃Br ✓ AICI₃ / FeCl₃ / FeBr₃ etc ✓	[2]
(d)	$C_6H_5NH_3^+ / C_6H_5NH_2 \checkmark$	[1]
(e)	CH₃COOC₂H₅ ✓	[1]
(f) (i)	(CH₃)₂C(OH)CN etc ✓	[1]
(ii)	nucleophilic 🗸 addition 🖌	
	$CH_{3} \xrightarrow{\delta_{+}} CH_{3} \xrightarrow{CH_{3}} CH_{3}$	
	Look for the following in a diagram as above or description: (dipoles not required)
	CN ⁻ /nucleophile attacks (δ)+ carbonyl C / curly arrow from CN ⁻ to carbonyl C \checkmark (curly arrow) breaking C=O \checkmark correct structure of the intermediate \checkmark curly arrow from O ⁻ to HCN / H ₂ O \checkmark	
	ANY 5 out of the 6 marks above	max
*	 (curly arrows must be clearly from and to the correct bond / atom to gain the mark) 	
	[Tot	al: 12]
]

Expected answers.		Mains
(structural isomerism is) same molecular formula, differen	nt structural formulae 🗸	
two correct structures of suitable exa	ample 🗸	
stereoisomerism (is same structural) formula /order of bo arrangements of the atoms \checkmark	onds, different spatial	
(cis-trans / geometric isomerism is due to) non-rotation a bond \checkmark	round a C=C double	
two correct structures of suitable example	ample 🗸	
(optical isomerism is when) molecules are non- superimposable mirror images / asymmetric / contain a chiral centre <	(or polymers may be isotactic, atactic or syndiotactic)	
carbon atom is attached to four distinguishable / different groups / atoms /(or shown in diagram) ✓	(or polymer side chain on the same, random or alternate sides)	
two correct 3-d structures of suitable	e example 🖌	
8 points on isomerism (3 MAX for optical is	somerism / polymers)	
(synthesis of only one stereoisomer of a pharmaceutical	is good because)	
only one of the two stereoisomers may be active /the tw different activity in the body ✓ a smaller dose needed /saves cost of materials/separat	vo isomers may have tion イ (ora)	
the other may have (harmful) side effects \checkmark	. ,	
good example of stereospecific drug e.g. Thalidomide / D	opa / Ibuprofen 🖌	
4 points on chiral synthesis		max [10]
Quality of Written Communication		
the answer is coherent, and at least two of the specialist t trans/geometric and optical isomerism are assigned co	erms: structural, cis- rrectly ✓	
the text contains at least two legible sentences with reason punctuation and grammar \checkmark	nably accurate spelling,	
		[2]
	ITot	al. 121
	(structural isomerism is) same molecular formula, different two correct structures of suitable exc stereoisomerism (is same structural) formula /order of bo arrangements of the atoms ✓ (cis-trans / geometric isomerism is due to) non-rotation a bond ✓ two correct structures of suitable exc (optical isomerism is when) molecules are non- superimposable mirror images / asymmetric / contain a chiral centre ✓ carbon atom is attached to four distinguishable / different groups / atoms /(or shown in diagram) ✓ two correct 3-d structures of suitable 8 points on isomerism (3 MAX for optical is (synthesis of only one stereoisomers may be active /the tw different activity in the body ✓ a smaller dose needed /saves cost of materials/separat the other may have (harmful) side effects ✓ good example of stereospecific drug e.g. Thalidomide / D 4 points on chiral synthesis Quality of Written Communication the answer is coherent, and at least two of the specialist t trans/geometric and optical isomerism are assigned co the text contains at least two legible sentences with reaso punctuation and grammar ✓	(structural isomerism is) same molecular formula, different structural formulae ✓ two correct structures of suitable example ✓ stereoisomerism (is same structural) formula /order of bonds, different spatial arrangements of the atoms ✓ (cis-trans / geometric isomerism is due to) non-rotation around a C=C double bond ✓ two correct structures of suitable example ✓ (optical isomerism is when) molecules are non- superimposable mirror images / asymmetric / contain a chiral centre ✓ (optical isomerism (or polymers may be isotactic, atactic or syndiotactic) carbon atom is attached to four distinguishable / different groups / atoms /(or shown in diagram) ✓ two correct 3-d structures of suitable example ✓ 8 points on isomerism (3 MAX for optical isomerism / polymers) (synthesis of only one stereoisomers may be active /the two isomers may have different activity in the body ✓ only one of the two stereoisomers may be active /the two isomers may have different activity in the body ✓ a smaller dose needed /saves cost of materials/separation ✓ (ora) the other may have (harmful) side effects ✓ good example of stereospecific drug e.g. Thalidomide / Dopa / Ibuprofen ✓ 4 points on chiral synthesis Quality of Written Communication the answer is coherent, and at least two of the specialist terms: structural, cis- trans/geometric and optical isomerism are assigned correctly ✓ the text contains at least two legible sentences with reasonably accurate spelling, punctuation and grammar ✓