Abbreviations, annotations and conventions used in the Mark Scheme	1 $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit AW $=$ alternative forward ora $=$ or reverse argument	
Question	Expected Answers	Marks
1 (a)	$K_{p}=\frac{p\left(\mathrm{SO}_{3}\right)^{2}}{p\left(\mathrm{SO}_{2}\right)^{2} \times p\left(\mathrm{O}_{2}\right)} \checkmark \checkmark$ 1 mark for correct powers but wrong way up. 1 mark for square brackets	[2]
(b)	An increase in pressure moves equilibrium to the right because there are less gaseous moles on the right hand side Increased pressures are expensive to generate/safety problems with walls of containers/enables gases to flow \checkmark K_{p} gets less with increasing temperature \checkmark SO_{2} and O_{2} increase $/ \mathrm{SO}_{3}$ decreases \checkmark Equilibrium \longrightarrow left to oppose increase in temperature Forward reaction is exothermic or ΔH is -ve/reverse reaction is endothermic or ΔH is +ve because K_{p} gets less with increasing temperature QoWC: organises relevant information clearly and coherently, using specialist vocabulary where appropriate	[6]
(c)	$\begin{aligned} & 3.0 \times 10^{2}=\frac{p\left(\mathrm{SO}_{3}\right)^{2}}{10^{2} \times 50} \\ & p\left(\mathrm{SO}_{3}\right)=f\left(3.0 \times 10^{2} \times 10^{2} \times 50\right)=1225 \mathrm{kPa} \\ & \%\left(\mathrm{SO}_{3}\right)=100 \times 1225 /(1225+10+50)=95 \% \end{aligned}$	[3]
(c) (i) (ii)	$2 \mathrm{ZnS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2} \checkmark \checkmark$ $\mathrm{ZnS}, \mathrm{O}_{2}$ as reactants and SO_{2} as a product: 1st mark. ZnO and balance: 2nd mark ZnS is more available than S. \checkmark	[2]
		Total: 15

\begin{tabular}{|c|c|c|}
\hline Abbreviations, annotations and conventions used in the Mark Scheme \& \multicolumn{2}{|l|}{\begin{tabular}{ll}
1 \& \(=\) alternative and acceptable answers for the same marking point \\
\(;\) \& \(=\) separates marking points \\
NOT \& \(=\) answers which are not worthy of credit \\
() \& = words which are not essential to gain credit \\
\(\overline{\text { ecf }}=\) (underlining) key words which must be used to gain credit \\
AW \& e alter carried forward \\
ora \& \(=\) or reverse worgument
\end{tabular}} \\
\hline Question \& Expected Answers \& Marks \\
\hline \& ```
\(\mathrm{O}_{3}: 1\)
and \(\mathrm{C}_{2} \mathrm{H}_{4} \checkmark\)
\(2 \checkmark\)
rate \(=k\left[\mathrm{O}_{3}\right]\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] \checkmark\)
``` \& \begin{tabular}{l}
[1] \\
[1] \\
[1]
\end{tabular} \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
measure gradient/tangent \\
at \(t=0 /\) start of reaction \(\checkmark\)
\[
\begin{aligned}
\& k=\frac{\text { rate }}{\left[\mathrm{O}_{3}\right]\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]} \checkmark \\
\& k=\frac{1.0 \times 10^{-12}}{0.5 \times 10^{-7} \times 1.0 \times 10^{-8}}=2 \times 10^{3} \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
\end{aligned}
\] \\
\(2 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}\) forms for every \(0.5 \mathrm{~mol} \mathrm{O}_{2}\) / stoichiometry of \(\mathrm{CH}_{2} \mathrm{O}: \mathrm{O}_{2}\) is not \(1: 1\) \\
rate increases \(\checkmark\) \\
k increases
\end{tabular} \& \begin{tabular}{l}
[2] \\
[3] \\
[1] \\
[2]
\end{tabular} \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
each atom has two unpaired electrons \\
2 oxygen atoms bonded by double bond \(\checkmark\) third oxygen bonded by a covalent bond and outer shells correct \\
For 2nd mark, all O atoms must have an octet. \\
A triangular molecule would have 3 single covalent bonds for 1st mark but the origin of each electron must be clear for 2nd mark \\
amount of \(\mathrm{O}_{3}\) in \(150 \mathrm{~kg}=150 \times 10^{3} / 48=3.13 \times 10^{3} \mathrm{~mol} \checkmark\) amount of Cl radicals in \(1 \mathrm{~g}=1 / 35.5=2.82 \times 10^{-2} \mathrm{~mol} \checkmark\) 1 mol Cl destroys \(3.13 \times 10^{3} / 2.82 \times 10^{-2}=1.11 \times 10^{5} \mathrm{~mol} \mathrm{O}_{3}\) 1 Cl radical destroys \(1.11 \times 10^{5} \mathrm{O}_{3}\) molecules \(\checkmark\) (calculator: 110937)
\end{tabular} \& [1]

[2]

[3] \\
\hline \& \& Total: 17 \\
\hline
\end{tabular}

| Abbreviations, annotations and conventions used in the Mark Scheme | $\prime$ $=$ alternative and acceptable answers for the same marking point <br> $;$ $=$ separates marking points <br> NOT $=$ answers which are not worthy of credit <br> () $=$ words which are not essential to gain credit <br>  $=$ (underlining) key words which must be used to gain credit <br> ecf $=$ error carried forward <br> AW $=$ alternative wording <br> ora $=$ or reverse argument |  |
| :---: | :---: | :---: |
| Question | Expected Answers | Marks |
| $\begin{array}{\|lll} \hline 3 & \text { (a) } & \text { (i) } \\ & & \text { (ii) } \end{array}$ | proton donor <br> partially dissociates | [1] <br> [1] |
| (b) | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \stackrel{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})+}{\text { base } 2}$$\mathrm{H}_{2} \mathrm{O}(1)$ <br> acid 1 <br> 1 mark for each acid-base pair 1$\quad$ acid $2 \checkmark$ | [2] |
| (c) <br> (i) <br> (ii) | $K_{a}=\frac{\left[C_{6} H_{5} \mathrm{O}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}$ <br> concentration $=38 / 94 \checkmark=0.40 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ <br> (first mark for $M_{r}$ of phenol - incorrect answer here will give ecf for remainder of question) $1.3 \times 10^{-10} \approx \frac{\left[H^{+}(\mathrm{aq})\right]^{2}}{0.40} \checkmark\left({ }^{\prime}=\text { 'sign is acceptable }\right)$ $\left[\mathrm{H}^{+}\right]=\int\left\{\left(1.3 \times 10^{-10}\right) \times(0.40)\right\}=7.2 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 7.2 \times 10^{-6}=5.14 \checkmark$ <br> 3 marks: $\left[\mathrm{H}^{+}\right]^{\checkmark}$; pH expression $\checkmark$; calc of pH from $\left[\mathrm{H}^{+}\right]^{\checkmark}$ <br> Common errors. <br> Without square root, answer $=10.28 \checkmark \checkmark \times$ <br> Use of 38 as molar concentration does not score $1 s t 2$ marks. This gives an answer of 4.15 for 3 marks $\checkmark \checkmark \checkmark$ | [1] <br> [5] |
| (d) |  <br> On structure, 1 mark for O Na on either or both phenol groups. | [2] |
|  |  | Total: 12 |


| Abbreviations, annotations and conventions used in the Mark Scheme | 1 $=$ alternative and acceptable answers for the same marking point <br> $;$ $=$ separates marking points <br> NOT $=$ answers which are not worthy of credit <br> () $=$ words which are not essential to gain credit <br> $\overline{\text { ecf }}=$ (underlining) key words which must be used to gain credit  <br> AW $=$ alternative wording <br> ora $=$ or reverse argument |  |
| :---: | :---: | :---: |
| Question | Expected Answers | Marks |
| 4 (a) | graphs are of pH against volume acid/alkali added with scale and units $\checkmark$ <br> sharp rise between two slight rises $\checkmark$ equivalent point $>7 \checkmark$ <br> sharp rise after addition of $25 \mathrm{~cm}^{3}$ of alkali $\checkmark$ <br> start pH $=2.9 \checkmark$ <br> finish pH = $12 \rightarrow 13 \checkmark$ | [6] |
| (b) | phenolphthalein changes colour in the pH range corresponding to the sharp rise in the titration curve $\checkmark$ methyl orange changes colour before the sharp rise $\checkmark$ | [2] |
| (c) | sharp rise in pH after addition of $12.5 \mathrm{~cm}^{3} \mathrm{NaOH} \checkmark$ pH start is higher than $2.9 \checkmark$ | [2] |
| (d) | moles HCl in $23.2 \mathrm{~cm}^{3}=0.200 \times 23.2 / 1000=4.64 \times 10^{-3} \checkmark$ <br> moles $B$ in $25 \mathrm{~cm}^{3}=$ moles $\mathrm{HCl}=4.64 \times 10^{-3} \checkmark$ <br> moles B in $250 \mathrm{~cm}^{3}=4.64 \times 10^{-3} \times 10=4.64 \times 10^{-2} \checkmark$ <br> $4.64 \times 10^{-2} \mathrm{~mol} \mathrm{~B}$ has a mass of 4.32 g <br> molar mass of $B=4.32 / 4.64 \times 10^{-2}=93 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$ $93-16=77$ <br> Therefore B is phenylamine / $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ <br> There may be other valid structures that are amines. <br> These can be credited provided that everything adds up to 93. <br> Answer could be a primary, secondary or tertiary amines. | [6] |
|  |  | Total: 16 |

