2816/01

Mark Scheme

Abbreviations,	I = alternative and acceptable answers for the same marking	noint		
annotations and	; = separates marking points	point		
conventions	NOT = answers which are not worthy of credit			
used in the Mark	() = words which are not essential to gain gradit			
Scheme	= (underlining) key words which must be used to gain credit			
	ecf = error carried forward			
	Avv – alternative wording			
	ora = or reverse argument			
0				
Question	Expected Answers	Marks		
1 (a)	$p(SO_3)^2$			
	$K_p = p(SO_2)^2 \times p(O_2) \forall \forall$			
		[2]		
	1 mark for correct powers but wrong way up.			
	1 mark for square brackets			
(b)	An increase in pressure moves equilibrium to the right			
	because there are less asseous moles on the night hand			
	side V			
	Increased pressures are expensive to concrete (asfet)			
	problems with wells of containers (and because of generate/satery			
	problems with wais of containers/enables gases to flow v			
	K anta la anuitat i su ta su			
	R, gets less with increasing temperature			
	50_2 and 0_2 increase/ 50_3 decreases \checkmark	[6]		
	Equilibrium \longrightarrow left to oppose increase in temperature \checkmark			
	Forward reaction is exothermic or ΔH is –ve /reverse			
	reaction is endothermic or ΔH is +ve because K_{μ} gets less	[1]		
	with increasing temperature \checkmark			
	QoWC: organises relevant information clearly and			
	coherently, using specialist vocabulary			
	where appropriate V			
(c)	$p(SO_{\star})^2$			
\ − <i>I</i>	$3.0 \times 10^2 = \frac{p_1(303)}{10^2 + 50} \checkmark$			
	10- X 20			
	$n(SO_{2}) = [(3 O_{2} \times 10^{2} \times 10^{2} \times 50) = 1005 + 0.50$			
	$p(30_3) = v(3.0 \times 10^{-1} \times 30) = 1223 \text{ kpg v}$			
	$(30_3) = 100 \times 1223 / (1225 + 10 + 50) = 95\% \vee$	[3]		
	27-6 . 20			
(C) (I)	$22nO + 3O_2 \longrightarrow 22nO + 2SO_2 \checkmark \checkmark$	[2]		
	$2n5$, O_2 as reactants and SO_2 as a product: 1st mark.			
	ZnO and balance: 2nd mark			
(ii)	ZnS is more available than S. 🗸	[1]		
		► d		
		Total: 15		

2816/01

Mark Scheme

Abbreviations, annotations and conventions used in the Mark Scheme		is, and Aark	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 		
Question			Expected Answers	Marks	
2	(a)	(i)	O3: 1 and C2H4 ✓	[1]	
		(ii)	2 ✓	[1]	
		(iii)	rate = <i>k</i> [O ₃][C ₂ H ₄] ✓	[1]	
	(b)	(i)	measure gradient/tangent ✓ at t = 0/start of reaction ✓	[2]	
		(ii)	$k = \frac{\text{rate}}{[O_3][C_2H_4]} \checkmark$		
			$k = \frac{1.0 \times 10^{-12}}{0.5 \times 10^{-7} \times 1.0 \times 10^{-8}} = 2 \times 10^3 \checkmark \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \checkmark$	[3]	
		(iii)	2 mol CH ₂ O forms for every 0.5 mol O_2 / stoichiometry of CH ₂ O : O_2 is not 1:1 \checkmark	[1]	
		(iv)	rate increases √ k increases √	[2]	
	(c)	(i)	each atom has two unpaired electrons ✓	[1]	
		(ii)	2 oxygen atoms bonded by double bond ✓ third oxygen bonded by a covalent bond and outer shells correct ✓ For 2nd mark, all O atoms must have an octet.		
			A triangular molecule would have 3 single covalent bonds for 1st mark but the origin of each electron must be clear for 2nd mark	[2]	
		(iii)	amount of O_3 in 150 kg = $150 \times 10^3/48 = 3.13 \times 10^3$ mol \checkmark amount of Cl radicals in 1 g = $1/35.5 = 2.82 \times 10^{-2}$ mol \checkmark 1 mol Cl destroys $3.13 \times 10^3/2.82 \times 10^{-2} = 1.11 \times 10^5$ mol O_3 1 Cl radical destroys 1.11×10^5 O_3 molecules \checkmark (calculator: 110937)	[3]	
				Total: 17	

2816/01

A STATE AND

Mark Scheme

January 2005

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 		
Question	Expected Answers	Marks	
3 (a) (l)	proton donor *	[1]	
(ii)	partially dissociates 🗸	[1]	
(b)	$C_6H_5OH(aq) + OH^-(aq) \Rightarrow C_6H_5O^-(aq) + H_2O(1)$		
	acid 1 base 2 🗸 base 1 acid 2 🗸		
	1 mark for each acid-base pair	[2]	
(c) (i)	$\mathcal{K}_{a} = \frac{[C_{6}H_{5}O^{-}][H^{*}]}{[C_{6}H_{5}OH]} \checkmark$	[1]	
(ii)	concentration = $38/94 \checkmark = 0.40 \text{ mol dm}^{-3} \checkmark$ (first mark for M, of phenol - incorrect answer here will give ecf for remainder of question) $1.3 \times 10^{-10} \approx \frac{[\text{H}^*(aq)]^2}{0.40} \checkmark (=' \text{ sign is acceptable})$ $[\text{H}^*] = J \{ (1.3 \times 10^{-10}) \times (0.40) \} = 7.2 \times 10^{-6} \text{ mol dm}^{-3} \checkmark$ $p\text{H} = -\log[\text{H}^*] = -\log 7.2 \times 10^{-6} = 5.14 \checkmark$ 3 marks: $[\text{H}^*] \checkmark$; $p\text{H}$ expression \checkmark ; calc of pH from $[\text{H}^*] \checkmark$ Common errors: Without square root, answer = $10.28 \checkmark \checkmark \times$ Use of 38 as molar concentration does not score 1st 2 marks. This gives an answer of 4.15 for 3 marks $\checkmark \checkmark \checkmark$	[5]	
(d)	$\begin{array}{c} O^{-}Na^{+} \\ O^{-}Na^{+} \\ O^{-}Na^{+} \\ CH_{2}(CH_{2})_{4}CH_{3} \\ / NaOH /Na^{-} \\ weak acid/base pair mixture \\ formed \checkmark \end{array}$	[2]	
		10tal. 12	

Mark Scheme

Abbreviations,	/ = alternative and acceptable answers for the same marking point			
annotations and	; = separates marking points			
conventions	NOT = answers which are not worthy of credit			
used in the Mark	() = words which are not essential to gain credit			
Scheme	= (underlining) key words which <u>must</u> be used to gain credit			
	ecf = error carried forward			
	AW = alternative wording			
	ora = or reverse argument			
Question	Expected Answers	Marks		
4 (a)	graphs are of pH against volume acid/alkali added with scale and units \checkmark sharp rise between two slight rises \checkmark equivalent point > 7 \checkmark sharp rise after addition of 25 cm ³ of alkali \checkmark start pH = 2.9 \checkmark finish pH = 12 \rightarrow 13 \checkmark	[6]		
(b)	phenolphthalein changes colour in the pH range corresponding to the sharp rise in the titration curve ✓ methyl orange changes colour before the sharp rise ✓	[2]		
(c)	sharp rise in pH after addition of 12.5 cm ³ NaOH \checkmark pH start is higher than 2.9 \checkmark	[2]		
(d)	moles HCl in 23.2 cm ³ = 0.200 × 23.2/1000 = 4.64 × 10 ⁻³ \checkmark moles B in 25 cm ³ = moles HCl = 4.64 × 10 ⁻³ \checkmark moles B in 250 cm ³ = 4.64 × 10 ⁻³ × 10 = 4.64 × 10 ⁻² \checkmark 4.64 × 10 ⁻² mol B has a mass of 4.32 g molar mass of B = 4.32/4.64 × 10 ⁻² = 93 g mol ⁻¹ \checkmark 93 - 16 = 77 \checkmark Therefore B is phenylamine / C ₆ H ₅ NH ₂ \checkmark There may be other valid structures that are amines. These can be credited provided that everything adds up to 93. Answer could be a primary, secondary or tertiary amines.	[6]		
		Total: 16		
		101a1. 10		