| 2815/06 | Mark Scheme | Janua | |--|---|-------| | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same m ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain ecf = error carried forward AW = alternative wording ora = or reverse argument | | | Question | Expected Answers | Marks | | | | i | | de used
the wo
de (Pt,
meter + | for streng
l as a catal
ord catalyst
H ₂ and H ⁺
complete
on 1 mol.d | yst
)
must be la
circuit | | 1 1 1 | |---|---|---------------------------------------|---------------------------|--| | de (Pt,
meter +
centrati | completeon 1 mol.d | circuit | | 1 | | , | 1 mark | iii , picco | ule l'aiii | 2 | | √ ²⁺ | VO ₂ ⁺ | VO ²⁺ | V ³⁺ | | | +2 | +5 | +4 | +3 | | | ilac | yellow | blue | Green | | | | +2
ilac
on of ce | +2 +5 ilac yellow on of cell potentia | +2 +5 +4 ilac yellow blue | +2 +5 +4 +3 ilac yellow blue Green on of cell potential as -0.44 V | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | |--|---|------------------| | Question | Expected Answers | Marks | | 2 (a) (i)
(ii) | Central ion surrounded by molecules/ions/ligands Molecule/ion with a lone pair of electrons | 1 | | | Able to form a dative covalent or co-ordinate bond / which can be donated | 1 | | (b) | Two lone pairs/ able to form two dative covalent / co-
ordinate bonds | 1 | | (c) | Stereoisomerism – same atoms with same order of bonds but a different spatial arrangement / same structure but different arrangement of atoms Both isomers drawn for cis / trans Both isomers drawn for optical (must be mirror images) (all diagrams to show 3-D arrangement) Enantiomers/non superimposable mirror images Rotate plane polarised light in opposite direction by same number of degrees (any two for 1 mark) | 1
2
2
1 | | | | Total: 11 | | Abbreviations,
annotations and
conventions
used in the Mark
Scheme | / = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | oint | |--|---|-----------------------| | Question | Expected Answers | Marks | | 3 (a) (i) | Two orbital boxes higher and 3 orbital boxes lower Correct arrangement of electrons (see additional sheet) | 1 | | (b) | One lower energy and one higher energy d-orbital shown (see additional sheet) Electrons promoted from low to high energy d-orbitals Energy involved lies in visible region of spectrum / needs visible light Some of the visible light is transmitted / absorbed Idea that colour depends upon the actual wavelengths transmitted / energy gap Need at least one unpaired d-orbital or Cu ⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ Only Cu ²⁺ has an unpaired electron or Cu ²⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ QWC: communicates by using at least 3 terms from the following list d-orbitals, visible, spectrum, transmitted, wavelength, energy gap, unpaired electron, high or low energy, absorbed, d-sub shell | 1
1
1
1
1 | | | Compound absorbs green/yellow Blue and red transmitted (to give purple) (allow all colours absorbed except violet/blue and red for 1 mark) | Total: 13 | | Abbreviations, | / = alternative and acceptable answers for the same marking p | point | |------------------|--|----------| | annotations and | ; = separates marking points NOT = answers which are not worthy of credit | | | conventions | () = words which are not essential to gain credit | | | used in the Mark | = (underlining) key words which <u>must</u> be used to gain credit | | | Scheme | ecf = error carried forward | | | | AW = alternative wording | | | | ora = or reverse argument | | | | | | | Question | Expected Answers | Marks | | 4 (a) (i) | Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6l ⁻ = 2Cr ³⁺ + 3l ₂ + 7H ₂ O All species correct (ignore electrons for this mark) | 1 | | | Equation balanced (penalise if electrons not cancelled out) | 1 | | (ii) | | 1 | | | Brown colour disappears S ₂ O ₃ ²⁻ reacts with I ₂ (to form colourless I ⁻) | 1 | | | Green colour remains due to Cr ³⁺ (must say what gives green colour) | 1 | | (b) (i) | | 1 | | | Oxidation Number of Cr on both sides = +6 Oxidation Number does not change therefore not redox | 1 | | (ii) | Oxidation Number does not change therefore her redex | 4 | | (11) | Orange to yellow (both needed for 1 mark) | 1 | | (iii) | | 1 | | | Any suitable named acid or correct formula eg H ₂ SO ₄ | | | | | | | | | Total: 9 |