

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT = separates marking points Nanswers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
$2 \text { (a) (i) }$ (ii) (b) (c)	Central ion surrounded by molecules/ions/ligands Molecule/ion with a lone pair of electrons Able to form a dative covalent or co-ordinate bond / which can be donated Two lone pairs/ able to form two dative covalent / coordinate bonds Stereoisomerism - same atoms with same order of bonds but a different spatial arrangement / same structure but different arrangement of atoms Both isomers drawn for cis / trans Both isomers drawn for optical (must be mirror images) (all diagrams to show 3-D arrangement) Enantiomers/non superimposable mirror images Rotate plane polarised light in opposite direction by same number of degrees (any two for 1 mark)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT separates marking points N answers which are not worthy of credit ($=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
3 (a) (i) (ii) (b) (c)	Two orbital boxes higher and 3 orbital boxes lower Correct arrangement of electrons (see additional sheet) One lower energy and one higher energy d-orbital shown (see additional sheet) Electrons promoted from low to high energy d-orbitals Energy involved lies in visible region of spectrum / needs visible light Some of the visible light is transmitted / absorbed Idea that colour depends upon the actual wavelengths transmitted / energy gap Need at least one unpaired d-orbital or $\mathrm{Cu}^{+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ Only Cu^{2+} has an unpaired electron or $\mathrm{Cu}^{2+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$ QWC: communicates by using at least 3 terms from the following list d-orbitals, visible, spectrum, transmitted, wavelength, energy gap, unpaired electron, high or low energy, absorbed, d-sub shell Compound absorbs green/yellow Blue and red transmitted (to give purple) (allow all colours absorbed except violet/blue and red for 1 mark)	1 1 2 1 Total: 13

