Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument			
Question	Expected answers	Marks	Additional guidance	
1 (a) (i)	Electron affinity -696 (1 mark); Atomisation of Cl ₂ +244 (1 mark); From top to bottom 2 nd IE +1150, 1 st IE +590, atomisation of Ca +178 formation -796 (1 mark)	3	Allow 244, 1150, 590 and 176 i.e. without plus sign	
(ii)	-796 - 178 - 590 - 1150 - 244 + 696 (1); But -2262 (with no working) (2)	2	Allow ecf from the wrong figures on the Born- Haber cycle 1 error max one mark 2 errors 0 mark	
(iii)	Magnesium fluoride more exothermic than calcium chloride / ora because Ionic radius of Mg ²⁺ is less than that of Ca ²⁺ / charge density of magnesium ion is greater than that of calcium ion / ora (1); Ionic radius of F ⁻ is less than that of <i>CI</i> / charge density of fluoride ion is greater than that of chloride ion / ora (1); Stronger (electrostatic) attraction between cation and anion in MgF ₂ than in CaCl ₂ / stronger ionic bonds in MgF ₂ (1)	3	Answer must refer to the correct particle. Not Mg or magnesium has a smaller radius or fluorine has a smaller radius Allow magnesium or fluorine has a smaller ionic radius	
(b)	Any two from For second ionisation energy the electron lost is closer to the nucleus / AW (1); For second ionisation energy the electron is lost from a particle that is already positive (1); For second ionisation energy there is one more proton than electron (1) So outer electron more firmly attracted to the nucleus (1)	2	Allow ora	
	·	Total = 10		

Mark Scheme

2815/01	Mark Scheme		January 2005
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected answers	Marks	Additional guidance
2 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1); Has an incomplete set of 3d electrons (1)	2	Allow 3d orbitals are not completely occupied / incomplete 3d sub-shell Allow has half-filled d orbitals
(b) (i)	Any two from Variable oxidation state / variable valency (1); Act as catalysts (1); Form complexes / form complex ions (1); Form coloured compounds (1)	2	Not high melting point / good thermal and electrical conductors / high density etc
(c)	Iron (II) ions give a green ppt (1); Iron (III) ions give an orange-rust ppt (1)	2	Precipitate must be used once Allow solid instead of ppt
(d)	4Fe ²⁺ + O ₂ + 4H ⁺ → 4Fe ³⁺ + 2H ₂ O Correct reactants and products (1); Correct balancing (1)	2	
(e) (i)	Copper may react with potassium manganate(VII) / iron(III) ions formed in titration may be reduced back to iron(II) ions by the copper (1)	1	
(ii)	MnO ₄ gains electrons and is reduced / Mn oxidation state changes from +7 to +2 so it is reduced (1); Fe ²⁺ loses electrons and is oxidised / Fe oxidation state changes from +2 to +3 so it is oxidised (1)	2	
(iii)	Moles of $MnO_4^- = 4.50 \times 10^{-4}$ (1); Moles of $Fe^{2^+} = 5 \times moles MnO_4^- / 2.25 \times 10^{-3}$ (1); Mass of $Fe = moles$ of $Fe^{2^+} \times 55.8 / 0.1256$ (1); Percentage = 18.6 % (1)	4	Allow answers that use 56 for A _r of Fe this gives 18.7 Allow ecf
		Total = 15	

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected answers	Marks	Additional guidance
3 (a)	(Pale blue solution) to a (light) blue ppt (1); with excess dark blue solution (1)	2	
(b)	Octahedral shape with clear indication of 3D either by construction lines or wedges etc (1); 90° (1)	2	Ignore mistakes with the ligands question focuses on octahedral and the bond angle
(c)	Water molecule 2 lone pairs (and 2 bond pairs) (1); Water ligand 1 lone pair and 3 bond pairs / lone pair is now a bond pair / water has one less lone pair when it is a ligand (1); Lone pairs repel more than bond pairs (1)	3	Not atoms repel
		Total =	

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument Expected answers Marks Additional			
Question	•		guidance	
4	Twelve from Chemical formula Correct formula of all oxides – MgO, Al₂O₃, SO₂ or SO₃ (1); Number of outer electrons per atom increases / oxidation state of element increases (1); Structure and bonding – Any three from Correct bonding – MgO is ionic, Al₂O₃ has intermediate bonding and SO₂ or SO₃ are covalent (1); Correct structure - MgO and Al₂O₃ both giant structures, SO₂ or SO₃ simple (1); Ionic 'dot-and-cross' diagram for MgO or Al₂O₃ (1); Covalent 'dot-and-cross' diagram for SO₂ or SO₃(1); Action of water – Any four from MgO reacts water to give an alkaline solution (1); because the oxide ions react with water molecules / MgO + H₂O → Mg(OH)₂ / O²- + H₂O → 2OH (1); Al₂O₃ does not react with water / does not dissolve in water (1); SO₂ or SO₃ reacts to give acidic solutions (1); SO₂ or SO₃ reacts to give acidic solutions (1); SO₂ or SO₃ has electrostatic attraction between ions (1); SO₂ or SO₃ has van der Waals forces / has permanent dipole-permanent dipole attraction / instantaneous dipole (1); Comparison of strength of forces in ionic and simple molecular e.g. strong and weak / comparison of forces in Al₂O₃ and simple molecule (1) And QWC – one mark for a well ordered and structured answer. Property clearly linked with explanation on at least two occasions (1)	13	Ignore any other formulae Allow marks from diagrams e.g. dot and cross or lattice Allow Al ₂ O ₃ ionic bonding with covalent character / polar covalent (1) Allow attraction between positive and negative ions / attraction between magnesium ions and oxide ions Allow strong ionic bonds and weak intermolecular	
		Total =	forces	