Question	Expected Answers	Marks
1 (a)	$K_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} \checkmark \checkmark$ award 1 mark if upside down	[2]
(b) (i)	CH₃COOH C₂H₅OH CH₃COOC₂H₅ H₂O 6.0 12.5 0 0 1 7.5 5 5	[2]
(ii)	$K_c = \frac{5 \times 5}{1 \times 7.5} = 3.3 \checkmark \text{ no units } \checkmark$ (or ecf based on answers to (i) and/or (a))	[2]
(c)	leave experiment longer 🗸 monitor compositions and repeat until constant value 🗸	[2]
(d) (i)	more $CH_3COOC_2H_5$ & H_2O / less CH_3COOH & C_2H_5OH \checkmark equilibrium \longrightarrow right \checkmark AW	[2]
(ii)	K _c stays same ✓	[1]
(e)	stays the same/ catalyst does not shift equilibrium position forward & reverse reactions altered by same amount/ equilibrium achieved in less time	[2]
(f) (i)	equilibrium → left ✓ more reactants / less products ✓	[2]
(ii)	forward reaction is exothermic √	[1] Total: 16

2

Questi	ion		Expected Answers	Marks
2	(a)		$H_2O_2 + 2I^- + 2H^+ \longrightarrow I_2 + 2H_2O$ equation includes $H_2O_1I^-$, H^+ as reactants and I_2 as product \checkmark equation balanced \checkmark	[2]
	(b)	(i)	Exp 2 has twice [I-] as Exp 1 and rate has quadrupled \checkmark , so order = 2 with respect to I- \checkmark Exp 3 has twice [H+] as 2 and rate is unchanged \checkmark , so order = 0 with respect to H+ \checkmark AW	[4]
	((ii)	rate = $k [H_2O_2] [I^-]^2 \checkmark \checkmark 1$ mark for: rate = $k \times concs$ (ecf from (i))	[2]
	((iii)	$k = \text{rate/}[H_2O_2][I^-]^2 \checkmark (\text{ecf from (ii)})$	
			From one of expts, e.g. Exp 1: $k = 1.15 \times 10^{-6}/(0.01)(0.01)^2$ = $1.15 \checkmark \text{dm}^6 \text{mol}^{-2} \text{s}^{-1} \checkmark$ (ecf from (ii))	[3]
	(c)		rate of reaction straight line increasing through 0,0 [H ₂ O ₂ (aq))] /mol dm ⁻³	[2]
	(d) ((i)	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	[1]
	((ii)	1 dm ³ H ₂ O ₂ \longrightarrow 20 dm ³ O ₂ \checkmark amount of O ₂ = 20/24 mol \checkmark concentration of H ₂ O ₂ = 2 x 20/24 = 1.67 mol dm ⁻³ \checkmark	[3]
				Total: 17

	stion	-	Expected Answers	Marks
3	(a)	(i)	a proton donor 🗸	[1]
		(ii)	partially dissociates 🗸	[1]
		(iii)	pH = -log[H ⁺]	[1]
		(iv)	A solution that minimises changes/resists change in pH after addition of acid/alkali VNOT 'maintains constant pH' or 'cancel out'	[1]
(b)	(b)		H ₂ CO ₃ reacts with added alkali / added alkali reacts with H ⁺ / H ⁺ + OH ⁻ → H ₂ O ✓	
			The base or HCO₃ reacts with added acid ✓	
			$H_2CO_3 + OH^- \longrightarrow HCO_3^- + H_2O \checkmark$	
			HCO ₃ ⁻ + H ⁺ → H ₂ CO ₃ √AW	[4]
			QoWC: equilibrium position moves to counteract change / explanation in terms of le Chatelier's principle \checkmark	[1]
	(c)		$K_{a} = \frac{[H^{+}][HCO_{3}^{-}(aq)]}{[H_{2}CO_{3}(aq)]} \checkmark$	
		$[H^*] = 10^{-pH} \checkmark = 10^{-7.4} = 3.98 \times 10^{-8} \checkmark$		
			$\frac{[HCO_3^-(aq)]}{[H_2CO_3(aq)]} = \frac{K_a}{[H^+]} = \frac{4.17 \times 10^{-7}}{3.98 \times 10^{-8}} = 10.5 \checkmark$	[4]
				Total: 13

2

Questic	on		Expected Answers	Marks
	a)	(i)	crude oil √	[1]
		(ii)	$C_4H_{10} + 3\frac{1}{2}O_2 \longrightarrow C_4H_2O_3 + 4H_2O$ C_4H_{10} , O_2 & $C_4H_2O_3$ \checkmark all correct and balanced \checkmark	[2]
		(iii)	moles butane = 30 × 1 000/24 = 1 250 √	
			M _r maleic anhydride = 98 √	
			mass maleic anhydride = moles × M _r = 1 250/1000 × 98 kg 122.5 kg √	[3]
(b)		molecular formula = $C_4H_6O_6$ \checkmark empirical formula = $C_2H_3O_3$ \checkmark (award both marks if only empirical formula is shown)	[2]
(c)	(i)	HOOC COOK + H ₂ O	[2]
		(ii)	any chemical that reacts: e.g. metal more reactive than Pb / carbonate / carboxylic acid / alcohol / hydrogen halide ✓	
			observation to match chemical added 🗸	
			equation to match chemistry of chemical added; products 🗸 balanced 🗸	[4]
				Total: 14