Question		on	Expected answers	Marks	Additional
					guidance
1 ((a)	(i)	(Enthalpy change of) formation (of magnesium oxide) (1);	3	
			(Enthalpy change of) atomisation (of magnesium) (1);		Allow (enthalpy change of) sublimation (of magnesium)
			First ionisation enthalpy (of magnesium) (1)		Allow <u>first</u> ionisation energy
		(ii)	Mg ²⁺ (g) and O ²⁻ (g) (1)	1	State symbols essential
		(iii)	Electron being gained is repelled by the negative charge of the ion / aw (1)	1	
((b)	(i)	Lattice enthalpy = $-149 - 736 - 1450 - 248 - 650 - 602$ (1); = -3835 (kJ mol ⁻¹) (1)	2	Allow ecf from one error (1)
		(ii)	Lattice enthalpy of barium oxide is less exothermic than that of magnesium oxide / lattice enthalpy is smaller in magnitude / ora (1); Mg ²⁺ has a smaller ionic radius than Ba ²⁺ / Mg ²⁺ has a higher charge density than Ba ²⁺ / ora (1); So stronger attraction between the positive and negative	3	Not bigger or smaller lattice enthalpy Correct particles must be used e.g. not Mg has a smaller radius
			ion (1)		Allow so has stronger ionic bonds
(0	c)		High melting point / (very) large lattice enthalpy / aw (1)	1	Not resistant to heat
(0		(i)	$BaCO_3 \rightarrow BaO + CO_2 (1)$	1	State symbols not essential
		(ii)	Decomposition temperature higher for BaCO ₃ / ora (1) Polarising ability of cation decreases from Mg ²⁺ to Ba ²⁺ (1); Polarisation causes distortion of the charge cloud around the carbonate ion / polarisation weakens the covalent bonds within the carbonate ion (1)	3	Particles used must be correct e.g. not Mg is more polarising Allow marks via a diagram
				Total = 15	

Question		on	Expected answers	Marks	Additional guidance
2	(a)	***************************************	Often are catalysts (1)	1	Allow compounds are often paramagnetic Not metallic properties
	(b)	(i)	Tetrahedral / or a clear drawing of a tetrahedral ion (1); Bond angle of 109.5 ± 0.5° (1)	2	Allow square planar (1) with bond angle of 90° (1) Tetrahedral structure must have at least one wedge
		(ii)	CI ⁻ (1)	1	
		(iii)	(Concentrated) hydrochloric acid / (concentrated) solution of an ionic chloride (1)	1	Allow correct formula
		(iv)	Suitable equation e.g. $[Cu(H_2O)_6]^{2^+} + 4Cl^- \rightarrow [CuCl_4]^{2^-} + 6H_2O$ Or $[Cu(H_2O)_6]^{2^+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2^+} + 4H_2O$; Reaction in which a ligand is swapped or displaced by another ligand / aw (1)	2	Not ligand is substituted
				Total = 7	

Question		on	Expected answers	Marks	Additional guidance
3	(a)		Oxidation - Oxidation number of oxygen changes from -1 to 0; Reduction - oxidation number of oxygen changes from -1 to -2 (1)	2	Allow one mark if all the oxidation numbers for oxygen (and hydrogen) are correct
	(b)	(i)	$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$ Correct reactants and products (1); Balancing (1)	2	Ignore electrons for the first mark
		(ii)	Moles of MnO ₄ ⁻ = 17.5 × 10 ⁻³ × 0.0200 / 3.5 × 10 ⁻⁴ (1); Moles of H ₂ O ₂ = 2.5 x moles of MnO ₄ ⁻ / 8.75 × 10 ⁻⁴ (1); Conc of H ₂ O ₂ = $\frac{8.75 \times 10^{-4}}{0.025}$ = 0.0350 (mol dm ⁻³) (1)	3	Allow ecf within question Allow 0.035 Not 0.04 / 0.03
	(c)		Aqueous sodium hydroxide / potassium thiocyanate / ammonium thiocyanate (1); Appropriate observation e.g. orange-red / brown / brown-red / foxy-red ppt with NaOH(aq) or (blood) red with KSCN (1)	2	Allow hydroxide (ions) or thiocyanate (ions)
				Total = 9	

Question	Expected answers	Marks	Additional guidance
4	Chemical formula Correct formula of all chlorides (1); Number of outer electrons per atom increases /	14	Allow AICl ₃ or Al ₂ Cl ₆
	oxidation number increases (1);		
	Structure and bonding NaCl or MgCl ₂ are ionic and AlCl ₃ or SiCl ₄ are covalent (1) NaCl or MgCl ₂ are giant and AlCl ₃ or SiCl ₄ are simple		Do not award mark if one bonding or one structure is wrong
	(1) And any two from Correct 'dot-and-cross' diagram for one of the ionic		Do not penalise
	chlorides (1); Correct 'dot-and-cross' diagram for one of the covalent chlorides (1);		incorrect answers in these two marks
	Correct structure/bonding for Al ₂ Cl ₆ showing the dative bonding (1); Drawing of NaCl lattice (1);		
	Action of water		All dia a siste
	Any four from Ionic chlorides dissolve in water / NaCl or MgCl ₂ dissolve in water (1):		Allow dissociate in water
	Ionic chlorides give a neutral solution / NaCl gives a neutral solution or pH 7 / MgCl₂ gives a slightly acidic solution or pH 6-7 (1);		Allow polarisation
	Covalent chlorides are hydrolysed / covalent chlorides react / SiCl ₄ or AlCl ₃ react or are hydrolysed (1); Covalent chlorides give acidic solutions / SiCl ₄ or AlCl ₃ give acidic solutions or pH less than 6 (1)		of water molecules by A ³⁺ As alternative to hydrolysis mark
	Suitable equation e.g. $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCI$ (1)		Allow other species such as Si(OH) ₄
	Melting points NaCl, MgCl ₂ or ionic chlorides have electrostatic attraction between ions / attraction between positive and negative ions (1);		Not weak
	AICl ₃ , SiCl ₄ or simple molecular lattice have van der Waals force of attraction (1); Strong ionic bonds and weak intermolecular forces (1)		covalent bonds
	QWC – one mark for technical terms Award one mark if the candidate has illustrated the		
	answers correctly using at least three of the technical terms (1) - hydrolysis, hydration, intermolecular, ionic covalent, lattice, electrostatic, van der Waals,		
	polarisation, dative bonding.	Total = 14	