1 (a) (i) (relative) molecular mass $/ M_{r} \checkmark$
(ii) right / highest m / e /highest mass / second highest mass etc \checkmark AW
(b)

(c) Tollens' reagent / ammoniacal silver nitrate \checkmark warm / heat \checkmark aldehyde: silver mirror \checkmark ketone: no reaction /change
(d) (i) yellow/orange /red \checkmark
precipitate / solid / crystals \checkmark
(ii) measure the melting point (of the solid / ppt) \checkmark
(re)crystallise / purify /
compare result with known compounds / data book \checkmark
allow use of warm acidified
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to give green or Fehlings/ Benedicts to give red ppt
(e)(i) no peak at 9.5-10.0/peak with area $1 \checkmark$

Q 1 continued

1 (e) (ii)

1 mark for identifying the correct structure

the peak at 1.1 ...

(is in the range $0.7-1.6$ so) is due to $\mathrm{CH}_{3} / \mathrm{R}-\mathrm{CH}_{3}$ group(s) \checkmark
is a triplet / 1:2:1 as it is next to a CH_{2} /two protons \checkmark
is due to six protons/two CH_{3} (in the same environment) \checkmark

the peak at 2.4 ...

(is in the range $2.0-2.9$ so) is due to the $\mathrm{CH}_{2} /-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{R}$ group(s) \checkmark
is a quartet / 1:3:3:1 as it is next to a $\mathrm{CH}_{3} /$ three protons \checkmark
is due to four protons/two CH_{2} (in the same environment) \checkmark
the number of peaks ...
(two peaks, so only) two environments/ two types of proton
/ Ha and Hb on structure /each $\mathrm{CH}_{3} \mathrm{CH}_{2}$ - is identical etc \checkmark
three environments for methylbutanone so would get 3 peaks/ $\mathrm{Ha}, \mathrm{Hb}, \mathrm{Hc}$ shown on a structure \checkmark
four environments for for pentan-2-one so would get 4 peaks / Ha, Hb, Hc, Hd shown on a structure \checkmark
max

2 (a) carbonyl / ketone \checkmark
phenol \checkmark
(b)(i) $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4}$

1 for $\mathrm{C}_{14} \ldots \checkmark$
1 for $\ldots \mathrm{H}_{8} \mathrm{O}_{4} \checkmark$
(ii) moles dissolved $=0.800 \times 0.015=0.012$
$/$ conc in $\mathrm{gdm}^{-3}=0.015 \times 240=3.6(\mathrm{~g}) \checkmark$
mass dissolved $=0.0120 \mathrm{~mol} \times 240 / 3.6 \mathrm{gdm}^{-3} \times 0.800$
$=2.88 / 2.9(\mathrm{~g}) \checkmark$ (or ecf)
(c)

$\mathrm{H}_{2} \mathrm{O}$ as product \checkmark
balanced equation \checkmark
(d) $\quad \mathrm{C}=\mathrm{O} /$ carbonyl \checkmark

1680-1750
O-H / hydroxy(I) \checkmark
3230-3550
(e)

3 (a) $\quad \mathrm{CH}_{3} \mathrm{CHO}+2[\mathrm{H}] \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
where $\mathrm{CH}_{3} \mathrm{CHO} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ gets \checkmark and also $2[\mathrm{H}]$ to give a correct balanced equation \checkmark
(b) (i)

$\checkmark \checkmark$ one mark for each curly arrow
(ii)

(iii) electron/lone pair donor
(iv) nucleophile/hydride is attracted to a positive (charge) centre $/ \delta^{+}$carbon larea of electron deficiency
(its lone pair of electrons) forms a (covalent/dative) bond the double/ π electron pair goes to the oxygen atom.
... (causing)the carbonyl/double/ π bond to break \checkmark
ANY 3 out of 4 marks
(c) hydrogen has no lone pair

4 (a) $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} \checkmark$
(b)

either $-\mathrm{NH}_{3}{ }^{+}$or $-\mathrm{COO}^{-}$shown in the right place \checkmark rest of the structure correct \checkmark
(c) (i) optical (isomerism)
(ii)

(or shown as zwitterion, or with $\mathrm{C}_{7} \mathrm{H}_{7}$)
at least one structure correctly drawn \checkmark a correct mirror image \checkmark
(d) difference in position of the NH_{2} relative to the COOH an OH group (in \mathbf{G})
extra carbon /longer chain (in G) \checkmark extra chiral centre (in G) \checkmark

ANY 3 out of 4
(e) (i)

(ii) for lengthening the carbon chain / increasing the number of carbon atoms \checkmark
(f) (i)

(ii) a mixture of stereoisomers ... because \mathbf{G} is made synthetically / not naturally /in the laboratory /the HCN can add above or below etc

Q 4 continued

4 (g)

NH and $\mathrm{CO} \checkmark$
all bonds displayed correctly
(h) (only) one stereoisomer has the right shape / fits the active site etc $/$ is pharmacologically active
the other stereoisomer may have (harmful) side-effects \checkmark
increased dose is needed
valid reason for increased costs - eg testing of both isomers (NOT just related to increased dosage) \checkmark

ANY 3 out of 4 marks

5 (a) addition involves breaking a double bond \checkmark
condensation involves loss of water / small molecule \checkmark
correct PE repeat unit (either: $\left\{\mathrm{CH}_{2}-\mathrm{CH}_{2}\right\}$ or $\left\{\mathrm{CH}_{2}\right\}$) \checkmark
equation to form PE from ethene showing ' n ' monomers to give a polymer using ' n ' / with at least 4 carbons extending on \checkmark
correct ester link displayed in PET \checkmark correct PET repeat unit indicated
equation to form a correct repeat of PET and $\mathrm{H}_{2} \mathrm{O}$, showing at least one of each monomer

Quality of written communication

mark for good organisation and a logical response ... examples are linked to the relevant definitions / the response attempts or implies a comparison
(b) (i)

(ii) dilute / aq / named concentration
acid / H^{+}/ alkali / OH^{-}/ suitable named acid or alkali
heat / reflux \checkmark
(iii) $\mathrm{CH}_{3} \mathrm{COOH}$ (if acid hydrolysis in (ii)) / $\mathrm{CH}_{3} \mathrm{COO}^{-}$(from alkaline hydrolysis in (ii))
(c)


```
6 (a) (i) \(\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{Br}\)
(ii) \(\mathrm{AlCl}_{3} / \mathrm{FeBr}_{3}\) etc \(\checkmark\)
(b)
```


(c) stage 2
$\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$
$\mathrm{HNO}_{3} \checkmark$
$60^{\circ} \mathrm{C}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$
stage 3
tin \checkmark
$\mathrm{HCl} \checkmark$
heat / reflux \checkmark
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{NO}_{2}+6[\mathrm{H}] \longrightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(or with H^{+}as well to give the salt $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}{ }^{+}$)

```

ANY 7 out of 8
max
[7]

\section*{Quality of Written Communication}
mark for technical terms ... answer contains at least two of the following terms:
concentrated/conc (for any acid), nitration, nitrating mixture, electrophilic, substitution, reduction, catalyst (for \(\mathrm{H}_{2} \mathrm{SO}_{4}\) or tin), 2-methylnitrobenzene \(\checkmark\)```

