# **Final Mark Scheme**

- **1 (a) (i)** (relative) molecular mass /  $M_r \checkmark$ 
  - (ii) right / highest <sup>m</sup>/<sub>e</sub> / highest mass / second highest mass etc ✓ AW
  - (b)



| (c)     | Tollens' reagent / ammoniacal silver nitrate ✓<br>warm / heat ✓<br>aldehyde: silver mirror ✓<br>ketone: no reaction /change ✓ | allow use of warm acidified<br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> to give green<br>or Fehlings/ Benedicts to<br>give red ppt | [4] |
|---------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| (d)(i)  | yellow / orange /red ✓<br>precipitate / solid / crystals ✓                                                                    |                                                                                                                                         | [2] |
| (ii)    | measure the melting point (of the solid / ppt) $\checkmark$                                                                   |                                                                                                                                         |     |
|         | (re)crystallise / purify / compare result with known compounds / data book $\checkmark$                                       |                                                                                                                                         | [2] |
| (e) (i) | no peak at 9.5 - 10.0 / peak with area 1 ✓                                                                                    |                                                                                                                                         | [1] |

Qu 1 continued overleaf

[1]

[1]

[4]

# Q 1 continued

1 (e) (ii)

 $C_{\text{II}}$ CH<sub>3</sub>·CH<sub>2</sub>·C-CH<sub>2</sub>-CH<sub>3</sub> / pentan-3-one  $\checkmark$ 

1 mark for identifying the correct structure

## the peak at 1.1 ...

(is in the range 0.7-1.6 so) is due to  $CH_3/R-CH_3$  group(s)

is a triplet / 1:2:1 as it is next to a CH<sub>2</sub> /two protons  $\checkmark$ 

is due to six protons/two CH<sub>3</sub> (in the same environment)  $\checkmark$ 

# the peak at 2.4 ...

(is in the range 2.0 – 2.9 so) is due to the CH<sub>2</sub> /-CO-CH<sub>2</sub>-R group(s)  $\checkmark$  is a quartet / 1:3:3:1 as it is next to a CH<sub>3</sub>/three protons  $\checkmark$ 

is due to four protons/two  $CH_2$  (in the same environment)  $\checkmark$ 

### the number of peaks ...

(two peaks, so only) two environments/ two types of proton / Ha and Hb on structure /each  $CH_3CH_2$ - is identical etc  $\checkmark$ 

three environments for methylbutanone so would get 3 peaks/ Ha, Hb, Hc shown on a structure  $\checkmark$ 

four environments for for pentan-2-one so would get 4 peaks / Ha, Hb, Hc, Hd shown on a structure  $\checkmark$ 

ANY 5 reasoning marks out of 9

max [6]

[Total: 21]

.

| 2 (a)  | carbonyl / ketone ✓<br>phenol ✓                                                                                        | [2]                |
|--------|------------------------------------------------------------------------------------------------------------------------|--------------------|
| (b)(i) | $C_{14}H_8O_4$<br><b>1</b> for $C_{14} \checkmark$<br><b>1</b> for $H_8O_4 \checkmark$                                 | [2]                |
| (ii)   | moles dissolved = $0.800 \times 0.015 = 0.012$<br>/ conc in gdm <sup>-3</sup> = $0.015 \times 240 = 3.6(g) \checkmark$ |                    |
|        | mass dissolved = 0.0120mol x 240 / 3.6gdm <sup>-3</sup> x 0.800<br>= <b>2.88/2.9</b> (g) ✓ (or ecf)                    | [2]                |
| (c)    | $H_2O \text{ as product } \checkmark$                                                                                  | [3]                |
| (d)    | C=O / carbonyl ✓<br>1680 – 1750 ✓<br>O-H / hydroxy(l) ✓<br>3230 – 3550 ✓                                               | [4]                |
| (e)    |                                                                                                                        | [1]<br>[Total: 14] |

**3 (a)**  $CH_3CHO + 2[H] \longrightarrow C_2H_5OH$ where  $CH_3CHO \longrightarrow C_2H_5OH$  gets  $\checkmark$ and also 2[H] to give a correct balanced equation  $\checkmark$ 

(b)(i)

✓ one mark for each curly arrow

(ii) о-н сн<sub>3</sub>—́с\_н

[1]

[1]

[2]

[2]

- (iii) electron/lone pair donor
- (iv) nucleophile/hydride is attracted to a positive (charge) centre /δ<sup>+</sup> carbon /area of electron deficiency ✓

(its lone pair of electrons) forms a (covalent/dative) bond  $\checkmark$ 

the double/ $\pi$  electron <u>pair</u> goes to the oxygen atom ...  $\checkmark$ 

... (causing )the carbonyl/double/ $\pi$  bond to break  $\checkmark$ 

ANY 3 out of 4 marks

[3]

(c) hydrogen has no lone pair

[1]

[Total: 10]

ł

•

January 2004

Qu 4 continued overleaf

# Q 4 continued



(h) (only) one stereoisomer has the right shape / fits the active site etc / is pharmacologically active ✓

the other stereoisomer may have (harmful) side-effects  $\checkmark$ 

increased dose is needed  $\checkmark$ 

valid reason for increased costs - eg testing of both isomers (NOT just related to increased dosage)  $\checkmark$ 

ANY 3 out of 4 marks

[3]

[2]

[Total 19 Marks]

I

5 (a) addition involves breaking a double bond ✓ condensation involves loss of water / small molecule ✓ correct PE repeat unit (either: -{CH<sub>2</sub>-CH<sub>2</sub>} or -{CH<sub>2</sub>}) ✓ equation to form PE from ethene showing 'n' monomers to give a polymer using 'n' / with at least 4 carbons extending on ✓ correct ester link displayed in PET ✓ correct PET repeat unit indicated  $\checkmark$ equation to form a correct repeat of PET and H<sub>2</sub>O, showing at least one of each monomer 🗸 [7] Quality of written communication mark for good organisation and a logical response ... examples are linked to the relevant definitions / the response attempts or implies a comparison [1] (b)(i) CH₃ [1] dilute / aq / named concentration ✓ (ii) acid / H<sup>+</sup>/ alkali / OH<sup>-</sup>/ suitable named acid or alkali ✓ heat / reflux ✓ [3] (iii) CH<sub>3</sub>COOH (if acid hydrolysis in (ii)) / CH<sub>3</sub>COO<sup>-</sup> (from alkaline hydrolysis in (ii)) [1]

(C)



но<sup>- СН</sup>2 ОН СН2

[2]

[Total: 15]

6 (a) (i)  $CH_3CI / CH_3Br \checkmark$  [1]

(ii) 
$$AlCl_3 / FeBr_3 etc \checkmark$$
 [1]

(c) stage 2 H<sub>2</sub>SO₄ ✓ HNO₃ ✓ 60°C ✓

 $C_6H_5CH_3 + HNO_3 \longrightarrow C_6H_4(CH_3)NO_2 + H_2O \checkmark$ 

## stage 3 tin ✓ HCI ✓ heat / reflux ✓

 $C_6H_4(CH_3)NO_2 + 6[H] \longrightarrow C_6H_4(CH_3)NH_2 + 2H_2O$ (or with H<sup>+</sup> as well to give the salt  $C_6H_4(CH_3)NH_3^+$ )

## ANY 7 out of 8

#### max [7]

[1]

## **Quality of Written Communication**

mark for technical terms ... answer contains at least two of the following terms:

concentrated/conc (for any acid), nitration, nitrating mixture, electrophilic, substitution, reduction, catalyst (for  $H_2SO_4$  or tin), 2-methylnitrobenzene  $\checkmark$ 

[1]

[Total 11 Marks]