(a) Forward and reverse reactions at same rate √

Achievable from either direction ✓, requires closed system ✓

concentrations of reactants and products are constant \checkmark

max: [2]

(b) (i) $K_c = \frac{[CH_3OH(g)]}{[CO(g)][H_2(g)]^2} \checkmark \checkmark 1 \text{ mark for top; 1 mark for bottom}$

[2]

(ii) $K_c = \frac{(2.6 \times 10^{-5})}{(3.1 \times 10^{-3})(2.4 \times 10^{-2})^2} \checkmark = 14.6 \checkmark (dm^6 mol^{-2})$

[2]

(c) (i) Why did the equilibrium move to the right fewer molecules on right ✓

reaction relieves increase in pressure ✓

[2]

(ii) What is the effect, if any, on K_cK_c stays same √

[1]

(iii) Rate changes

Rate increases ✓

Increased collisions/more concentrated ✓

Rates initially forward faster than reverse ✓

At equilibrium, rates same ✓

[4]

(d) (i) K_c decreases so products decrease/reactants increase ✓
 Therefore equilibrium moves to the left/to endothermic side ✓
 2nd mark dependent on first.

[2]

(ii) ΔH is negative because of equilibrium change in (i) \checkmark Mark consequential on (i)

[1]

(iii) Partial pressure decreases because less CH₃OH is now present ✓

[1]

[Total: 17]

2. **(a) (i)** $m(NH_4NO_3) = 80 \checkmark$

moles
$$N_2O$$
 = moles NH_4NO_3 = 100/80 = 1.25 mol \checkmark mass N_2O = 1.25 x (28 + 16) = 55 g \checkmark

[3]

(ii) nitrogen in NH₄⁺: -3 → +1 / increases by 4 ✓ nitrogen in NO₃⁻: +5 → +1 / decreases by 4 ✓

[2]

(b) (i) 1st order has a constant half life ✓
 Evidence from graph, either drawn or stated below with 2 half lives ✓
 half life approx 52 s√

[3]

(ii) rate = $k[N_2O(g)]$ \checkmark

[1]

(iii) evidence of tangent on graph \checkmark rate = 0.00524 \checkmark mol dm⁻³ s⁻¹ (allow \pm 0.005 : i.e. values in range 0.00475 – 0.00575 mol dm⁻³ s⁻¹)

[2]

(iv) 0.00524 (ans to (ii)) = $k \times 0.400$ $k = 0.0131 \checkmark s^{-1} \checkmark$

[2]

(v) rate determining step involves 1 molecule of N_2O \checkmark equation shows 2 mol N_2O reacting \checkmark

[2]

(c) Increases the pressure/rate increases \checkmark

Gives out heat ✓

Forms oxygen → more efficient combustion ✓

moles of products > moles of reactants ✓

[2 max]

[Total: 17]

3. (a)

Acid is a proton/H⁺ donor ✓

Base is a proton/H⁺ acceptor ✓

Conjugate acid has H⁺ more than conjugate base ✓

Equation showing acid-base pairs <

2 acid-base pairs labelled correctly ✓

Dilute acid has small number of moles dissolved per volume ✓

Weak acid has partial dissociation ✓

[7]

Quality of Written Communication

At least **two** complete sentences that are legible and where the spelling, punctuation and grammar allow the meaning to be clear. At least one equation shown. ✓

[1]

$$K_a = \frac{[H^{+}(aq)][CN^{-}(aq)]}{[HCN(aq)]} \checkmark$$

[1]

(ii)

$$K_{a} = \frac{[H^{+}(aq)]^{2}}{[HCN(aq)]} \qquad \therefore 4.9 \times 10^{-10} = \frac{[H^{+}(aq)]^{2}}{0.010} \checkmark$$

$$[H^{+}(aq)] = \sqrt{\{(4.9 \times 10^{-10}) \times (0.010)\}} = 2.2 \times 10^{-6} \text{ mol dm}^{-3} \checkmark$$

$$pH = -\log[H^{+}(aq)] = -\log 2.2 \times 10^{-6} = 5.65/5.66/5.7 \checkmark$$

$$(accept calculator value)$$

[3]

[Total: 12]

C : H : O =
$$66.7/12$$
 : $11.1/1$: $22.2/16 \checkmark$ = 5.56 : 11.1 : 1.39 = 4 : 8 : 1

empirical formula = C₄H₈O ✓

$$48 + 8 + 16 = 72$$
 which is half of M_r

Therefore molecular formula = $C_8H_{16}O_2$ \checkmark

Structural formula = CH₃(CH₂)₆COOH ✓

[4]

(ii) caprylic acid is a longer molecule/contains more electrons ✓ caprylic acid has more van der Waals forces between molecules ✓ caprylic acid has a higher boiling point / is less volatile ✓

[2 max]

$$[H^{+}(aq)] = K_{w} / [OH^{-}(aq)] \checkmark = 1.00 \times 10^{-14} / 0.500 = 2.00 \times 10^{-14} \text{ mol dm}^{-3} \checkmark$$

 $pH = -log[H^{+}(aq)] = -log 2 \times 10^{-14} = 13.699 / 13.7 \checkmark (calculator value: 13.69897)$
[3]

moles NaOH in 25.00 cm³ = moles NaOH = 0.0125 mol \checkmark

moles **A** in 21.40 cm³ = moles NaOH = 0.0125 mol \checkmark

moles **A** in 250 cm³ = $0.0125 \times 250/21.40 = 0.146 \text{ mol } / \text{[A]} = 0.584 \text{ mol dm}^{-3} \checkmark 0.146 \text{ mol A} \text{ has a mass of } 10.8 \text{ q}$

molar mass of $\mathbf{A} = 10.8/0.146 = 74 \text{ g mol}^{-1} \checkmark$

Therefore $\bf A$ is propanoic acid / ${\rm CH_3CH_2COOH}$ \checkmark

[5]

[Total: 14]