Mark Scheme

1. (a)(i) voltage/PD (1)

of a cell when the electrode is **connected** to a reference electrode/ hydrogen electrode (1)

under standard conditions/one of standard conditions specified (1)[3](ii)argument based on iron being the more negative system/
based on iron releasing electrons/ argument based on dichromate(VI)
being more positive/ based on dichromate(VI) accepting electrons[1](iii) $14H^+ + 6Fe^{2+} + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$
species on correct sides (1)
balancing (1)[2]

(b) green/yellow (1)

red and blue absorbed (1)

(c) orbitals split 2 and 3 (1)

2 above 3 (1)

[2]

[2]

[Total: 10]

2815/06	Mark Scheme	January 2003
0 (-)	$z_{inc}(1)$	[1]
2. (a)		[1]
(b)(i)	4.46×10^{-3} (mol)	
(ii)	2.23 x 10 ⁻³ (mol)	[1]
(iii)	4.46 x 10 ⁻³ (mol)	[1]
(iv)	0.283 g (1)	(0)
	56.6% (1)	[2]
(c)(i)	from brown/yellow (1)	
	to colourless/white (1)	[2]

(ii)	change blue to colourless more distinct	[1]
(d)	any eg bronze/cupronickel (1)	[2]
	relevant use eg statues, como, ma sa ()	[Total: 11]

į

6

2815/06

Mark Scheme

January 2003

- 3. (a)(i) [Fe(NH₃)₄Cl₂]⁺
 - (ii) octahedral shape clearly 3D(1)

cis and trans forms drawn (1)

[Total: 7]

281	5/	06)
-----	----	----	---

•

į

.

I

January 2003

4. (a)	+5	[1]
(b)	yellow (to green) to blue to mauve/purple all correct (2)/ 3 correct (1)	
	reaction is reduction (1)	
	oxidation states are +5 to +4 to +3 to +2 (1)	
	explanation based on use of SEPs (1)	
	not reduced to vanadium 0 (1)	
	effervescence (1)	
	any correct redox equation (1)	[7 max]
(c)	catalyst (1)	
	acts by changing oxidation state (1)	[2]
		[Total: 10]

2815/06

5. most common oxidation states are +2 and +3 (1)

+2 is more stable than +3 (1)

stable aqueous ion is $[Co(H_2O)_6]^{2+}(1)$

this complex is pink (1)

 $[CoCl_4]^{2-}(1)$

this complex is blue (1)

+3 oxidation stabilised by complexing with ammonia (1)

[Co(NH₃)₆]³⁺ (1)

QWC [1]

[8] Max [6]

plus QWC [1]

[Total: [7]