1. (a)(i) voltage/PD (1)
of a cell when the electrode is connected to a reference electrode/ hydrogen electrode (1)
under standard conditions/one of standard conditions specified (1)
(ii) argument based on iron being the more negative system/
based on iron releasing electrons/ argument based on dichromate(VI) being more positive/ based on dichromate(VI) accepting electrons
(iii) $14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}$
species on correct sides (1)
balancing (1)
(b) green/yellow (1)
red and blue absorbed (1)
(c) orbitals split 2 and 3 (1)

2 above 3 (1)
2. (a) $\quad \operatorname{zinc}(1)$
(b)(i) $4.46 \times 10^{-3}(\mathrm{~mol})$
(ii) $2.23 \times 10^{-3}(\mathrm{~mol})$
(iii) $4.46 \times 10^{-3}(\mathrm{~mol})$
(iv) $0.283 \mathrm{~g}(1)$
56.6\% (1)
(c)(i) from brown/yellow (1)
to colourless/white (1)
(ii) change blue to colourless more distinct
(d) any eg bronze/cupronickel (1)
relevant use eg statues/coins/medals (1)
3. (a)(i) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
(ii) octahedral shape - clearly $3 \mathrm{D}(1)$
cis and trans forms drawn (1)

cis with $2 \mathrm{Cl}^{-}$at 90° trans with $2 \mathrm{Cl}^{-}$at 180° labelling (1)
(iii) 6
(b) anti cancer drug (1)
destroys cell DNA (1)
4. (a) +5
(b) yellow (to green) to blue to mauve/purple all correct (2)/ 3 correct (1) reaction is reduction (1)
oxidation states are +5 to +4 to +3 to +2 (1)
explanation based on use of SEPs (1)
not reduced to vanadium 0 (1)
effervescence (1)
any correct redox equation (1)
(c) catalyst (1)
acts by changing oxidation state (1)
5. most common oxidation states are +2 and +3 (1)
+2 is more stable than +3 (1)
stable aqueous ion is $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(1)$
this complex is pink (1)
$\left[\mathrm{CoCl}_{4}\right]^{2-}$ (1)
this complex is blue (1)
+3 oxidation stabilised by complexing with ammonia (1)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ (1)
QWC [1]
[8] Max [6]
plus QWC [1]
[Total: [7]

