Question	Expected answers	Marks
1 (a)	Number of outer shell electrons increases (by one) /	1
	uses (one) more outer electron in bonding / (maximum)	
(1-)	Oxidation number increases (by one) (1)	
(D)	Bonding NaCl and Macl	4
	Naci and $MgCl_2 = IONIC$	
	Aloi ₃ and Sici ₄ – covalent Structure	
	NaCl and MaCl giant	
	Naci and $MgCl_2 - giant$	
(c)	Sodium oblogida haa a bisharaa lii	
	silicon(IV) chlorido / sodium chlorido has a history (IV)	4
	point and silicon(IV) chloride a low molting point (1)	
	And	
	Any three from	
	Silicon(IV) chloride has intermolecular forces / van der	
	Waals forces of attraction / induced dipole-induced	
	dipole attractions (1);	
	these forces are weak (1);	
	NaCI has attraction between positive ion and negative	
	ion / NaCl has electrostatic attraction between ions (1);	
	these attractions are strong (1)	
(d)	Any six from	6
	Sodium chloride dissolves in water / NaCl(s) \rightarrow Na ⁺ (aq)	
	+ CI (aq) / NaCI dissociates in water (1);	
	Gives a colourless solution (1);	
	With a pH of 7 (1);	
	Silicon(IV) chloride is hydrolysed / vigorous reaction (1);	
	White procipitate formed (at a new former (4)	
	Sicl + $2H \cap \rightarrow SiO + 4H \cap A \cap O$	
	Si(OH), + 4HCl (1)	
· · · · · · · · · · · · · · · · · · ·		Total = 15

Question	Expected answers	Marks
2 (a)	$MgCO_3 \rightarrow MgO + CO_2(1)$	1
(b)	Moles of $MgCO_3 = 0.0050 / 0.00498$ (1); So mass of $BaCO_3 = 0.98 / 0.99$ (1)	2
(c)	More (inner) shielding (shells) / more shells (1)	1
(d)	Charge density decreases from Mg^{2+} to Ba^{2+} (1); As the rate of decomposition (as shown from the slope of graph) decreases from $MgCO_3$ to $BaCO_3 / MgCO_3$ produces more carbon dioxide (1)	2
(e)	Anion is polarised by the positive ion / carbonate is polarised by the cation / electron cloud around carbonate ion is distorted by cation / covalent bonds within the carbonate ion are weakened (1); Polarising ability of cation decreases from Mg ²⁺ to Ba ²⁺ / ora (1);	2
		Total = 8

ì

Question		Expected answers	Marke
3 (a)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1):	2
		(Iron is a transition element since this ion has an)	2
		incomplete set of 3d electrons / aw (1)	
(b)		Iron in the Haber process / Iron to catalyse reaction of	1
		nitrogen and hydrogen / iron in the synthesis of ammonia	
		(1)	
(c)	(i)	Calculation of moles / mole ratio (1)	2
		Na = 1.21, Fe = 0.603 and O = 2.41;	_
		Divide by smallest to give correct molar ratio (1)	
		OR	
		Calculation of relative formula mass (1);	
		Working out to get the same percentage compositions (1)	
	(ii)	+6 (1)	1
(d)	(i)	$2l^{\cdot} \rightarrow l_2 + 2e^{\cdot}(1)$	1
	(ii)	FeO_4^2 + 8H ⁺ + 4l ⁻ \rightarrow Fe ²⁺ + 4H ₂ O + 2l ₂	2
		Correct reactants and products (1);	-
		Balancing (1)	
	(iii)	Colour after is orange / yellow / brown (solution) (1)	1
			Total = 10

Question	Expected answers	Marks
4	Any eleven from	12
-	Bonding and shape	
	Dative / coordinate bonding - this must be stated in words	
	(1);	
	Water is an electron pair donor / ligand is an electron pair	
	donor / lone pair on oxygen (1);	
	Metal ion accepts electron pair (1);	
	Octahedral / drawing of octahedral complex (1)	
	Water	
	In both cases central oxygen is surrounded by four	
	electron pairs (1):	
	In gaseous water (2 bond pairs and) 2 lone-pairs (1);	
	In gaseous water lone pair-lone pair repulsion is greater	
	than other electron pair repulsions (1);	
	Bond angle is 104° – 105° (1);	
	In complex one dative bond is more like a bond pair /	
	water has only one lone pair (1);	
	So less repulsion from the lone pairs (1);	
	bond angle in complex is 106° – 108° / bond angle is	
	slightly bigger than 104° (1)	
	Distinguishing	
	Distinguishing Response (1) or a squeeus sodium bydroxide / add	
	Reagent (1) e.g. aqueous souldin nyuloxide / adu	
	Result of test with Fe^{2+} (1) e.g. green ppt with Fe^{2+} and	
	NH ₂ or NaOH and no reaction with SCN ⁻ :	
	Result with Fe^{3+} (1) e.g. orange ppt with Fe^{3+} and NH_3 or	
	NaOH and blood red with SCN-;	
	Suitable equations (2) e.g. $Fe^{2+}(aq) + 2OH(aq) \rightarrow$	
	$ $ Fe(OH) ₂ (s) or [Fe(H ₂ O) ₆] ³⁺ + SCN \rightarrow [Fe(SCN)(H ₂ O) ₅] ²⁺	
	+ H ₂ O	
	And	
	QWC – award one mark for answers using the correct	
	scientific terminology (1)	Total = 12
		10(0) - 12