Question	Expected answers	Marks
1 (a)	Number of outer shell electrons increases (by one)/ uses (one) more outer electron in bonding / (maximum) oxidation number increases (by one) (1)	1
(b)	Bonding NaCl and MgCl_{2} - ionic AlCl_{3} and SiCl_{4} - covalent Structure NaCl and MgCl_{2} - giant AlCl_{3} and SiCl_{4} - simple	4
(c)	Sodium chloride has a higher melting point than silicon(IV) chloride / sodium chloride has a high melting point and silicon(IV) chloride a low melting point (1); And Any three from Silicon(IV) chloride has intermolecular forces / van der Waals forces of attraction / induced dipole-induced dipole attractions (1); these forces are weak (1); NaCl has attraction between positive ion and negative ion / NaCl has electrostatic attraction between ions (1); these attractions are strong (1)	4
(d)	Any six from Sodium chloride dissolves in water $/ \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})$ $+\mathrm{Cl}(\mathrm{aq}) / \mathrm{NaCl}$ dissociates in water (1); Gives a colourless solution (1); With a pH of 7 (1); Silicon(IV) chloride is hydrolysed / vigorous reaction (1); Gives a mixture with a pH of between 0 and 6 (1); White precipitate formed / steamy fumes (1); $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl} / \mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}(1)$	6
		Total $=15$

Question	Expected answers	Marks
2 (a)	$\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}(1)$	1
(b)	$\begin{aligned} & \text { Moles of } \mathrm{MgCO}_{3}=0.0050 / 0.00498(1) ; \\ & \text { So mass of } \mathrm{BaCO}_{3}=0.98 / 0.99(1) \end{aligned}$	2
(c)	More (inner) shielding (shells) / more shells (1)	1
(d)	Charge density decreases from Mg^{2+} to Ba^{2+} (1); As the rate of decomposition (as shown from the slope of graph) decreases from MgCO_{3} to $\mathrm{BaCO}_{3} / \mathrm{MgCO}_{3}$ produces more carbon dioxide (1)	2
(e)	Anion is polarised by the positive ion / carbonate is polarised by the cation / electron cloud around carbonate ion is distorted by cation / covalent bonds within the carbonate ion are weakened (1); Polarising ability of cation decreases from Mg^{2+} to Ba^{2+} / ora (1);	2
		Total $=8$

Question	Expected answers	Marks
3 (a)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}(1) ;$ (Iron is a transition element since this ion has an) incomplete set of 3d electrons / aw (1)	2
(b)	Iron in the Haber process / Iron to catalyse reaction of nitrogen and hydrogen / iron in the synthesis of ammonia (1)	1
(c) (i)	Calculation of moles / mole ratio (1) $\mathrm{Na}=1.21, \mathrm{Fe}=0.603$ and $\mathrm{O}=2.41$; Divide by smallest to give correct molar ratio (1) OR Calculation of relative formula mass (1); Working out to get the same percentage compositions (1)	2
(ii)	+6 (1)	1
(d) (i)	$2 \mathrm{l}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}(1)$	1
(ii)	$\mathrm{FeO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+4 \mathrm{l}^{-} \rightarrow \mathrm{Fe}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{I}_{2}$ Correct reactants and products (1); Balancing (1)	2
(iii)	Colour after is orange / yellow / brown (solution) (1)	1
		Total $=10$

