

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2816/01

Unifying Concepts in Chemistry

Wednesday 19 JUNE 2002

Afternoon

1 hour 15 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre	e Number		lidate nber	

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE					
Qu. Max. Mark					
1	11				
2	18				
3	15				
4	16				
TOTAL	60				

This question paper consists of 10 printed pages and 2 blank pages.

(NH) S10968/4 © OCR 2002

Answer all questions.

1 A chemist set up an equilibrium system between dinitrogen tetroxide, N_2O_4 , and nitrogen dioxide, NO_2 , at 25 °C.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

The equilibrium concentrations were: $N_2O_4(g)$, 0.0390 mol dm⁻³; $NO_2(g)$, 0.0150 mol dm⁻³.

(a) (i) Write the expression for K_c in this equilibrium system.

[1]

(ii) Calculate K_c for this equilibrium. State the units.

[2]

(b) The standard enthalpy changes of formation of $\rm N_2O_4$ and $\rm NO_2$ are given below.

compound	$\Delta H_{\mathrm{f}}^{\Theta}/\mathrm{kJ}\mathrm{mol}^{-1}$
N ₂ O ₄	+9
NO ₂	+33

Calculate the standard enthalpy change for the forward reaction in this equilibrium.

(c)	This equilibrium system was heated at constant pressure. How would you expect the relative proportions of $\rm N_2O_4$ and $\rm NO_2$ to change? Explain your answer.
	change
	explanation

(d) NO_2 and N_2O_4 are both poisonous. After this investigation, the chemist needed to dispose of 0.00465 mol N_2O_4 safely. The chemist decided to do this by reacting the N_2O_4 with an alkali and chose aqueous sodium hydroxide.

$${\rm N_2O_4(g)} \ + \ 2{\rm NaOH(aq)} \ \longrightarrow \ {\rm NaNO_3(aq)} \ + \ {\rm NaNO_2(aq)} \ + \ {\rm H_2O(l)}$$

Calculate the minimum volume of 0.300 mol dm $^{-3}$ NaOH(aq) required to dispose of this amount of $\rm N_2O_4$.

[3]

[Total: 11]

[3]

2	The reaction between	hydrogen,	H ₂ , and	l nitrogen	monoxide,	NO,	has	the	following	rate
	equation.								•	

$$rate = k[H_2(g)][NO(g)]^2$$

(a) Using $6.0 \times 10^{-3} \text{mol dm}^{-3} \text{ H}_2(\text{g})$ and $3.0 \times 10^{-3} \text{mol dm}^{-3} \text{ NO(g)}$, the initial rate of this reaction was $4.5 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$.

Calculate the rate constant, k, for this reaction and state its units.

 (c) The overall equation for the reaction between hydrogen and nitrogen monoxide is shown below.

$$2H_2(g) + 2NO(g) \longrightarrow N_2(g) + 2H_2O(l)$$

This reaction takes place by a two step mechanism with the rate-determining step taking place first.

(i) Explain the term rate-determining step.

r4

(ii) Suggest the two steps for this reaction and write their equations below. The equation for the rate-determining step (RDS) has been partly completed.

[2]

(d) Each year in the UK, 700 000 tonnes of nitric acid, HNO₃, are manufactured for the production of fertilisers, dyes, explosives, etc. Nitrogen monoxide, NO, is prepared as an intermediate in the production of nitric acid from ammonia, NH₃.

NH ₃ (g)	O ₂ (g) ►	NO(g) + H ₂ O(l)	_	HNO ₃ (I)
1	1			

(i) What is the oxidation state of nitrogen in the following?

NH ₃	
NO	
HNO.	থে

(ii) Construct a balanced equation for the formation of NO(g) from $NH_3(g)$.

r	·OI
	4

(iii) Assuming that 1 mol NH₃ produces 1 mol HNO₃, calculate the mass of NH₃ that is required to meet the annual demand for HNO₃ in the UK.

[2]

[Total: 18]

- 3 Alpha hydroxy acids (AHAs) are monobasic organic acids, used in skin creams to combat the appearance of ageing. Approximately 1% solutions of AHAs remove wrinkles as the low pH aggravates the skin, causing it to swell. More concentrated solutions (approximately 12% or 1.5 mol dm⁻³) are used to remove dead skin.
 - (a) An AHA was analysed and had the percentage composition by mass:

C, 40.0%; H, 6.7%; O, 53.3%. $M_{\rm r} = 90$.

Calculate the molecular formula of this AHA.

[3]

(b) Calculate the pH of a $1.5\,\mathrm{mol\,dm^{-3}}$ solution of an AHA with an acid dissociation constant, K_a , of $1.2\,\mathrm{x}\,10^{-5}\,\mathrm{mol\,dm^{-3}}$. Show your working.

[4]

- (c) Beauty treatments often contain buffers. An example of a buffer is a mixture of ethanoic acid, CH₃COOH, and an ethanoate salt such as sodium ethanoate, CH₃COONa.
 - (i) Explain what is meant by a buffer solution.

[1]	

(ii) Write the chemical equation for the equilibrium in this buffer system.

[1]

((iii)	Explain how this buffer solution works. Use equations where appropriate.
		[3]
		ouffer solution was prepared using equal concentrations of $\mathrm{CH_3COOH}$ and SCOONa .
		at would be the effect on the pH of this buffer solution of adding some solid scoons? Explain your answer.
	effe	ct on pH
	expl	lanation
		[3]
		[Total : 15]

- In this question, you should use knowledge, principles and concepts from different areas of chemistry. (In this question, 1 mark is available for the quality of written communication.)
 - (a) The equation for the production of ammonia in the Haber process is shown below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -92 \text{ kJ mol}^{-1}$$

Explain why the conditions of temperature and pressure used in the Haber process (450 °C, 15 000 kPa) are a compromise .
[7]

(b) An *Alka-Seltzer* tablet contains about 0.5 g sodium hydrogencarbonate, NaHCO₃, and an excess of citric acid. When water is added to an *Alka-Seltzer* tablet, carbon dioxide gas is released.

The equation for the reaction that takes place is shown below. The formula of citric acid has been simplified as H_3A .

$$3NaHCO_3 + H_3A \longrightarrow Na_3A + 3CO_2 + 3H_2O$$

(i)	Explain, using ionic equations, how the addition of water allows the release of carbon dioxide from an <i>Alka-Seltzer</i> tablet.
	[4]
(ii)	Calculate the minimum mass of citric acid that needs to be in an $Alka-Seltzer$ tablet to ensure that all the sodium hydrogencarbonate reacts. (M_r citric acid: 192)

[Total: 16]