OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY

2816/01

Unifying Concepts in Chemistry
Wednesday
19 JUNE 2002
Afternoon
1 hour 15 minutes
Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	11	
2	18	
3	15	
4	16	
TOTAL	60	

Answer all questions.

1 A chemist set up an equilibrium system between dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, and nitrogen dioxide, NO_{2}, at $25^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

The equilibrium concentrations were: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}), 0.0390 \mathrm{~mol} \mathrm{dm}^{-3} ; \mathrm{NO}_{2}(\mathrm{~g}), 0.0150 \mathrm{~mol} \mathrm{dm}^{-3}$.
(a) (i) Write the expression for K_{c} in this equilibrium system.
(ii) Calculate K_{c} for this equilibrium. State the units.
(b) The standard enthalpy changes of formation of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} are given below.

compound	$\Delta H_{f}^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{~N}_{2} \mathrm{O}_{4}$	+9
NO_{2}	+33

Calculate the standard enthalpy change for the forward reaction in this equilibrium.
(c) This equilibrium system was heated at constant pressure. How would you expect the relative proportions of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} to change? Explain your answer.
change
explanation \qquad
\qquad
\qquad
(d) NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are both poisonous. After this investigation, the chemist needed to dispose of $0.00465 \mathrm{~mol}_{2} \mathrm{O}_{4}$ safely. The chemist decided to do this by reacting the $\mathrm{N}_{2} \mathrm{O}_{4}$ with an alkali and chose aqueous sodium hydroxide.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{NaNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Calculate the minimum volume of $0.300 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ required to dispose of this amount of $\mathrm{N}_{2} \mathrm{O}_{4}$.

2 The reaction between hydrogen, H_{2}, and nitrogen monoxide, NO , has the following rate equation.

$$
\text { rate }=k\left[\mathrm{H}_{2}(\mathrm{~g})\right][\mathrm{NO}(\mathrm{~g})]^{2}
$$

(a) Using $6.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2}(\mathrm{~g})$ and $3.0 \times 10^{-3} \mathrm{moldm}^{-3} \mathrm{NO}(\mathrm{g})$, the initial rate of this reaction was $4.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$.

Calculate the rate constant, k, for this reaction and state its units.
(b) Predict what would happen to the reaction rate after the following changes in concentrations. Show your reasoning.
(i) The concentration of $\mathrm{H}_{2}(\mathrm{~g})$ is doubled.
effect on rate
reason \qquad
\qquad
(ii) The concentration of $\mathrm{NO}(\mathrm{g})$ is halved.
effect on rate \qquad
reason \qquad
(iii) The concentrations of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{NO}(\mathrm{g})$ are both tripled. effect on rate
(c) The overall equation for the reaction between hydrogen and nitrogen monoxide is shown below.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

This reaction takes place by a two step mechanism with the rate-determining step taking place first.
(i) Explain the term rate-determining step.
\qquad
\qquad
(ii) Suggest the two steps for this reaction and write their equations below. The equation for the rate-determining step (RDS) has been partly completed.
step 1 (RDS) \qquad $+2$. \qquad \longrightarrow \qquad $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
step 2
$+$ \qquad

$$
\longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(d) Each year in the UK, 700000 tonnes of nitric acid, HNO_{3}, are manufactured for the production of fertilisers, dyes, explosives, etc. Nitrogen monoxide, NO, is prepared as an intermediate in the production of nitric acid from ammonia, NH_{3}.

(i) What is the oxidation state of nitrogen in the following?
NH_{3} \qquad
NO
HNO_{3}
(ii) Construct a balanced equation for the formation of $\mathrm{NO}(\mathrm{g})$ from $\mathrm{NH}_{3}(\mathrm{~g})$.
\qquad
(iii) Assuming that $1 \mathrm{~mol} \mathrm{NH}_{3}$ produces $1 \mathrm{~mol}_{\mathrm{HNO}_{3}}$, calculate the mass of NH_{3} that is required to meet the annual demand for HNO_{3} in the UK.

3 Alpha hydroxy acids (AHAs) are monobasic organic acids, used in skin creams to combat the appearance of ageing. Approximately 1% solutions of AHAs remove wrinkles as the low pH aggravates the skin, causing it to swell. More concentrated solutions (approximately 12% or $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$) are used to remove dead skin.
(a) An AHA was analysed and had the percentage composition by mass:

$$
\mathrm{C}, 40.0 \% ; \mathrm{H}, 6.7 \% ; \mathrm{O}, 53.3 \% . M_{\mathrm{r}}=90 .
$$

Calculate the molecular formula of this AHA.
(b) Calculate the pH of a $1.5 \mathrm{moldm}^{-3}$ solution of an AHA with an acid dissociation constant, K_{a}, of $1.2 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. Show your working.
(c) Beauty treatments often contain buffers. An example of a buffer is a mixture of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, and an ethanoate salt such as sodium ethanoate, $\mathrm{CH}_{3} \mathrm{COONa}$.
(i) Explain what is meant by a buffer solution.
\qquad
\qquad
(ii) Write the chemical equation for the equilibrium in this buffer system.
(iii) Explain how this buffer solution works. Use equations where appropriate.
\qquad
\qquad
\qquad
\qquad
(d) A buffer solution was prepared using equal concentrations of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$.

What would be the effect on the pH of this buffer solution of adding some solid $\mathrm{CH}_{3} \mathrm{COONa}$? Explain your answer.
effect on pH
explanation \qquad
\qquad
\qquad

4 In this question, you should use knowledge, principles and concepts from different areas of chemistry. (In this question, 1 mark is available for the quality of written communication.)
(a) The equation for the production of ammonia in the Haber process is shown below.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta H=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Explain why the conditions of temperature and pressure used in the Haber process $\left(450^{\circ} \mathrm{C}, 15000 \mathrm{kPa}\right.$) are a compromise.
\qquad
(b) An Alka-Seltzer tablet contains about 0.5 g sodium hydrogencarbonate, NaHCO_{3}, and an excess of citric acid. When water is added to an Alka-Seltzer tablet, carbon dioxide gas is released.

The equation for the reaction that takes place is shown below. The formula of citric acid has been simplified as $\mathrm{H}_{3} A$.

$$
3 \mathrm{NaHCO}_{3}+\mathrm{H}_{3} \mathrm{~A} \longrightarrow \mathrm{Na}_{3} \mathrm{~A}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

(i) Explain, using ionic equations, how the addition of water allows the release of carbon dioxide from an Alka-Seltzer tablet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the minimum mass of citric acid that needs to be in an Alka-Seltzer tablet to ensure that all the sodium hydrogencarbonate reacts. (M_{r} citric acid: 192)
\qquad

