recocnising achievement

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE
CHEMISTRY
2816/01
Unifying Concepts in Chemistry
Wednesday 21 JANUARY 2004 Morning 1 hour 15 minutes
Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	16	
2	17	
3	13	
4	14	
TOTAL	60	

This question paper consists of 11 printed pages and 1 blank page.

Answer all the questions.

1 The formation of ethyl ethanoate and water from ethanoic acid and ethanol is a reversible reaction which can be allowed to reach equilibrium. The equilibrium is shown below.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

(a) Write the expression for K_{c} for this equilibrium system.
(b) A student mixed together 6.0 mol ethanoic acid and 12.5 mol ethanol. A small amount of hydrochloric acid was also added to catalyse the reaction. He left the mixture for two days to reach equilibrium in a water bath at constant temperature, after which time 1.0 mol ethanoic acid remained.
(i) Complete the table below to show the equilibrium composition of the equilibrium mixture.

component	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$	$\mathrm{H}_{2} \mathrm{O}$
initial amount $/ \mathrm{mol}$	6.0	12.5	0.0	0.0
equilibrium amount $/ \mathrm{mol}$				

[2]
(ii) Calculate K_{c} to two significant figures. State the units, if any. The total volume of the equilibrium mixture is $1.0 \mathrm{dm}^{3}$.

$$
K_{c}=. ~ u n i t s ~
$$

(c) The student was concerned that the mixture may not have reached equilibrium. What could he do to be sure that equilibrium had been reached?
\qquad
\qquad
\qquad
(d) The student added more ethanol to the mixture.
(i) State, giving a reason, what would happen to the composition of the equilibrium mixture.
\qquad
\qquad
\qquad
(ii) What happens to the value of K_{c} ?
\qquad
(e) The student added more of the acid catalyst to the mixture.

State, giving a reason, what would happen to the composition of the equilibrium mixture.
\qquad
\qquad
\qquad
(f) The student repeated the experiment at a higher temperature and found that the value of K_{c} decreased.
(i) State, giving a reason, what would happen to the composition of the equilibrium mixture.
\qquad
\qquad
\qquad
(ii) What additional information does this information tell you about the reaction?
\qquad
\qquad

2 Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is a colourless liquid, widely used as an oxidising agent, antiseptic, and bleach for hair and cloth.

Hydrogen peroxide reacts with iodide ions, I^{-}, in the presence of acid, $\mathrm{H}^{+}(\mathrm{aq})$, forming iodine, I_{2}.
(a) Suggest a balanced equation for the overall reaction between $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}), \mathrm{I}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$ to form aqueous iodine.
(b) Three experiments were carried out using different initial concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$, $\mathrm{I}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$. The initial rate of formation of I_{2} was measured for each experiment.

The experimental results are shown below.

experiment	$\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{I}^{-}(\mathrm{aq})\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ $/ \mathrm{moldm}^{-3}$	rate $/ \mathrm{moldm}^{-3} \mathrm{~s}^{-1}$
1	0.010	0.010	0.005	1.15×10^{-6}
2	0.010	0.020	0.005	4.60×10^{-6}
3	0.010	0.020	0.010	4.60×10^{-6}

(i) Showing all your reasoning, determine the reaction orders for I^{-}and for H^{+}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) This reaction is first order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$.

Use this information and your answers to (i) to complete the rate equation for this reaction.
rate $=$
(iii) Calculate the rate constant k for this reaction. State the units for k.
(c) This reaction was shown to be first order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$ by plotting a rateconcentration graph.

Using the axes below, sketch a graph to show how the rate of this reaction changes with increasing $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration.

(d) Hydrogen peroxide readily decomposes to give water and oxygen.

Hydrogen peroxide is sold by volume strength. For example, 20 -volume $\mathrm{H}_{2} \mathrm{O}_{2}$ yields 20 volumes of oxygen gas for each volume of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.
(i) Construct an equation for the decomposition of hydrogen peroxide.
\qquad
(ii) Determine the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of 20 -volume hydrogen peroxide.

Show all your working clearly.

3 Carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, is a weak Bronsted-Lowry acid formed when carbon dioxide dissolves in water. Blood contains several buffer solutions and healthy blood is buffered to a pH of 7.40. The most important buffer solution in blood is a mixture of carbonic acid and hydrogencarbonate ions, $\mathrm{HCO}_{3}{ }^{-}$.

The equilibrium in the carbonic acid / hydrogencarbonate buffer system is shown below.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \quad K_{\mathrm{a}}=4.17 \times 10^{-7} \mathrm{moldm}^{-3}
$$

(a) Carbonic acid is a weak Bronsted-Lowry acid.

What is meant by the following terms?
(i) A Bronsted-Lowry acid.
\qquad
\qquad
(ii) A weak acid.
\qquad
\qquad
(iii) pH .
\qquad
(iv) A buffer solution.
\qquad
\qquad
(b) In this question, one mark is available for the quality of written communication.

Explain how the carbonic acid / hydrogencarbonate buffer works. Use equations to help your answer.
\qquad
(c) Calculate the ratio $\frac{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\right]}$ in healthy blood with a pH of 7.40 .

4 Maleic anhydride (cis-butenedioic anhydride) is an important industrial chemical. The structure of maleic anhydride is shown below.

(a) In industry, maleic anhydride is produced on a large scale by oxidation of butane in air over a hot catalyst.
(i) Suggest the industrial source of butane.
\qquad
(ii) An incomplete equation for this reaction is given below.

Complete the equation.

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\ldots \ldots \ldots \ldots \rightarrow \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{3}+\ldots \ldots \ldots \ldots
$$

(iii) Calculate the mass, in kg , of maleic anhydride that could be made by completely converting $30 \mathrm{~m}^{3}$ of butane in this reaction. ($1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$)

Assume that the molar volume of butane under the conditions used is $24 \mathrm{dm}^{3}$.
\qquad
(b) Maleic anhydride can be converted into tartaric acid by reaction with water and a suitable oxidising agent.

Deduce the empirical formula of tartaric acid.
(c) 'Cream of tartar' is often used in cookery.

This compound can be prepared by reacting aqueous solutions of tartaric acid and potassium hydroxide in 1:1 molar proportions.
(i) Complete the equation below for the preparation of 'cream of tartar'.

(ii) Suggest another chemical that would react with aqueous tartaric acid. The chemical you choose should not be a hydroxide or an oxide.

State what you would expect to see and write an equation for your chosen reaction. chemical \qquad
observation(s) \qquad
\qquad
equation

