

OXFORD CAMBRIDGE AND RSA EXAMINATIONS	
Advanced GCE	
CHEMISTRY	

Unifying Concepts in Chemistry

Wednesday 21 JANUARY 2004

Morning

1 hour 15 minutes

Candidates answer on the question paper. Additional materials: Data Sheet for Chemistry Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR	EXAMINE	R'S USE
Qu.	Max.	Mark
1	16	
2	17	
3	13	
4	14	
TOTAL	60	

Answer all the questions.

1 The formation of ethyl ethanoate and water from ethanoic acid and ethanol is a reversible reaction which can be allowed to reach equilibrium. The equilibrium is shown below.

$$CH_{2}COOH + C_{2}H_{5}OH \rightleftharpoons CH_{3}COOC_{2}H_{5} + H_{2}O$$

(a) Write the expression for K_c for this equilibrium system.

[2]

- (b) A student mixed together 6.0 mol ethanoic acid and 12.5 mol ethanol. A small amount of hydrochloric acid was also added to catalyse the reaction. He left the mixture for two days to reach equilibrium in a water bath at constant temperature, after which time 1.0 mol ethanoic acid remained.
 - (i) Complete the table below to show the equilibrium composition of the equilibrium mixture.

component	CH3COOH	C ₂ H ₅ OH	$CH_3COOC_2H_5$	H ₂ O
initial amount/mol	6.0	12.5	0.0	0.0
equilibrium amount/mol				
				[2]

(ii) Calculate K_c to two significant figures. State the units, if any. The total volume of the equilibrium mixture is 1.0 dm³.

3

For

2 Hydrogen peroxide, H_2O_2 , is a colourless liquid, widely used as an oxidising agent, antiseptic, and bleach for hair and cloth.

Hydrogen peroxide reacts with iodide ions, I^- , in the presence of acid, H⁺(aq), forming iodine, I_2 .

Δ

(a) Suggest a balanced equation for the overall reaction between $H_2O_2(aq)$, I⁻(aq) and $H^+(aq)$ to form aqueous iodine.

(b) Three experiments were carried out using different initial concentrations of $H_2O_2(aq)$, $I^-(aq)$ and $H^+(aq)$. The initial rate of formation of I_2 was measured for each experiment.

experiment	[H ₂ O ₂ (aq)] /mol dm ⁻³	[I ⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	rate /mol dm ⁻³ s ⁻¹
1	0.010	0.010	0.005	1.15×10 ^{−6}
2	0.010	0.020	0.005	4.60×10 ^{−6}
3	0.010	0.020	0.010	4.60×10 ^{−6}

The experimental results are shown below.

(i) Showing all your reasoning, determine the reaction orders for I^- and for H^+ .

(c) This reaction was shown to be first order with respect to H₂O₂ by plotting a rateconcentration graph.

5

Using the axes below, sketch a graph to show how the rate of this reaction changes with increasing H_2O_2 concentration.

(d) Hydrogen peroxide readily decomposes to give water and oxygen.

Hydrogen peroxide is sold by volume strength. For example, 20-volume H₂O₂ yields 20 volumes of oxygen gas for each volume of aqueous H_2O_2 solution.

- (i) Construct an equation for the decomposition of hydrogen peroxide.
-[1]
- (ii) Determine the concentration, in mol dm^{-3} , of 20-volume hydrogen peroxide.

Show all your working clearly.

answer mol dm⁻³ [3]

[Total: 17]

[Turn over

3 Carbonic acid, H_2CO_3 , is a weak Bronsted-Lowry acid formed when carbon dioxide dissolves in water. Blood contains several buffer solutions and healthy blood is buffered to a pH of 7.40. The most important buffer solution in blood is a mixture of carbonic acid and hydrogencarbonate ions, HCO_3^{-} .

The equilibrium in the carbonic acid / hydrogencarbonate buffer system is shown below.

 $H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$ $K_a = 4.17 \times 10^{-7} \text{ mol dm}^{-3}$

(a) Carbonic acid is a weak Bronsted-Lowry acid.

What is meant by the following terms?

- (i) A Bronsted-Lowry acid.
- (ii) A weak acid. (iii) pH. (iii) pH. (iv) A buffer solution.

For

Examiner's Use (b) In this question, one mark is available for the quality of written communication.

Explain how the carbonic acid / hydrogencarbonate buffer works. Use equations to help your answer.

		•
		•
		•
		•
		•
		•
		•
		•
		•
	[4]	l
	Quality of Written Communication [1]	ļ
(c)	Calculate the ratio $\frac{[HOO_3, (aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{[HOO_3 (aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{[HOO_3 (aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{[HOO_3 (aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{[H_2CO_3(aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{[H_2CO_3(aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{(H_2CO_3(aq))}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{(HO3_3(aq))}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{(HOO_3 (aq))}{(H_2CO_3(aq))}$ in healthy blood with a pH of 7.40.	
(c)	Calculate the ratio $\frac{[H_2CO_3(aq)]}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40. [4]	
(c)	Calculate the ratio $\frac{(1003 \cdot (40))}{[H_2CO_3(aq)]}$ in healthy blood with a pH of 7.40. [4]	

4 Maleic anhydride (*cis*-butenedioic anhydride) is an important industrial chemical. The structure of maleic anhydride is shown below.

- (a) In industry, maleic anhydride is produced on a large scale by oxidation of butane in air over a hot catalyst.
 - (i) Suggest the industrial source of butane.

.....[1]

(ii) An incomplete equation for this reaction is given below.

Complete the equation.

$$C_4H_{10}$$
 + $\rightarrow C_4H_2O_3$ + [2]

(iii) Calculate the mass, in kg, of maleic anhydride that could be made by completely converting 30 m^3 of butane in this reaction. ($1 \text{ m}^3 = 1000 \text{ dm}^3$)

Assume that the molar volume of butane under the conditions used is 24 dm³.

answer kg [3]

