

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE

CHEMISTRY

2815/01

Trends and Patterns

Friday 23 JANUARY 2004

Afternoon

1 hour

Candidates answer on the question paper. Additional materials: Data Sheet for Chemistry Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu	Max.	Mark
1	15	
2	7	
3	9	
4	14	
TOTAL	45	

For Examiner's Use

Answer all the questions.

1 The Born-Haber cycle below can be used to calculate the lattice enthalpy for magnesium oxide.

(a) (i) Write down the name for each of the following enthalpy changes.

Δ <i>H</i> ₁
Δ <i>H</i> ₂
۵ <i>H</i> ₃ [3]

(ii) Write down the missing formulae on the dotted line at the **top** of the Born-Haber cycle. Include state symbols. [1]

(iii) The equations representing the first and second electron affinities for oxygen are shown below.

3

 $\begin{array}{lll} O(g) &+ & e^- &\longrightarrow & O^-(g) \\ O^-(g) &+ & e^- &\longrightarrow & O^{2-}(g) \end{array} & \Delta H = -141 \text{ kJ mol}^{-1} \\ \Delta H = +791 \text{ kJ mol}^{-1} \end{array}$

Suggest why the enthalpy change for the second of these processes is positive.

.....[1]

(b) (i) Use the Born-Haber cycle to calculate the lattice enthalpy of magnesium oxide.

answer kJ mol⁻¹ [2]

(ii) Describe how, and explain why, the lattice enthalpy of magnesium oxide differs from that of barium oxide.

.....[3]

(c) Give one reason why magnesium oxide is a good material to make the lining of a furnace.

.....[1]

	4		For Examiner's
(d)	Ма	nesium carbonate and barium carbonate both decompose thermally.	Use
	(i)	Write the equation for the decomposition of barium carbonate.	
		[1]	
	(ii)	Describe and explain the difference between the decomposition temperature of barium carbonate and that of magnesium carbonate.	
		[3]	
		[Total: 15]	

•

2815/01 Jan04

[Turn over

$$H_2O_2(aq) \rightarrow O_2(g) + 2H^+(aq) + 2e^-$$

The half-equation for the reduction of acidified MnO_4^- is as follows.

3

......

.....

 $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O(I)$

Construct the equation for the reaction between H_2O_2 , MnO_4^- ions and H^+ ions. **(i)**

.....[2] (ii) A student takes a 25.0 cm³ sample of aqueous hydrogen peroxide and places this into a conical flask and then adds sulphuric acid to acidify the hydrogen peroxide.

The student titrates this sample of acidified hydrogen peroxide against a solution containing 0.0200 mol dm⁻³ $MnO_4^-(aq)$ ions. For complete reaction with the acidified hydrogen peroxide, the student uses 17.5 cm³ of this solution containing $MnO_4^-(aq)$ ions.

Calculate the concentration, in mol dm⁻³, of the aqueous hydrogen peroxide.

2 mol MnO_4^- reacts with 5 mol H_2O_2 .

	concentration mol dm ⁻³ [3]
(c)	Acidified hydrogen peroxide oxidises Fe ²⁺ (aq) to Fe ³⁺ (aq).
	Describe a simple chemical test to show the presence of Fe ³⁺ (aq).
	name of reagent used
	observation
	[2]

[Total: 9]

4 In this question, one mark is available for the quality of written communication.

There are trends in the physical and chemical properties of the chlorides of the elements of Period 3.

8

Using the chlorides of the elements Na to Si only,

• describe and explain the trends in

chemical formula structure and bonding action of water

• explain the trend in the melting points shown in the table.

chloride	sodium	magnesium	aluminium	silicon(IV)
	chloride	chloride	chloride	chloride
melting point/°C	808	714	180	-70

For Examiner's Use

[13]
Quality of Written Communication [1]
[Total: 14]

9