

OXFORD	CAMBRIDGE AND RSA EX	AMINATIONS	
			2814
Chains, F	Rings and Spectroscopy		
Friday	24 JANUARY 2003	Afternoon	1 hour 30 minutes
Candidates Additional m Data Sho Scientific	answer on the question paper. laterials: <i>eet for Chemistry</i> calculator		

Candidate Name	Centre Number	Candidate Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	11			
2	13			
3	12			
4	11			
5	13			
6	13			
7	8			
8	9			
TOTAL	90			

This question paper consists of 16 printed pages.

Answer all the questions.

- 1 Benzene, methylbenzene and phenol are used in the chemical and pharmaceutical industry as starting materials for making more complex aromatic compounds.
 - (a) Methylbenzene can also be made in the laboratory from benzene and chloromethane.
 - (i) Draw the structural formula of methylbenzene.

[1]

(ii) Give the equation for the preparation of methylbenzene from benzene.

[1]

(iii) Identify, by name or formula, a suitable catalyst for this reaction.

.....[1]

(iv) Methylbenzene is more reactive than benzene.

Name and draw the structural formula of an **organic** product which might be formed from the reaction of methylbenzene with chloromethane in the presence of the catalyst.

structural formula

name[2]

1

ł

ł

			4	For Examiner's Use
2	 Glycine is an amino acid obtained from natural proteins by digestion. The structure of glycine is CH₂(NH₂)COOH. (a) State in words the three dimensional shape adopted by the bonds in a molecule of glycine 			
		(i)	around the nitrogen atom,	
			[1]	
		(ii)	around the carbon atom of the CH ₂ group,	
			[1]	
		(iii)	around the carbon atom of the COOH group.	
			[1]	
	(b)	Ami Dra	ino acids react both with acids and with bases. w the structure you expect for glycine	
		(i)	in acidic solution,	
			[1]	
		(ii)	in alkaline solution.	
		_	[1]	
	(c)	Pro	teins can also be converted into amino acids in the laboratory.	
		(i)	State the reagents and conditions required.	
			[2]	
		(ii)	State the type of reaction taking place.	
			[1]	

For

(d)	Alaı Alaı	nine, (nine ha	CH ₃ CH(I as a chira	5 NH ₂)COOH, is another amino acid obtained fro al centre but glycine does not.	om proteins.	For Examiner's Use
	(i)	What	is mean	t by the term chiral centre?		
					[1]	
	(ii)	Draw	the two	stereoisomers of alanine.		
					[2]	
I	(iii)	Would	d you ex	pect the alanine isolated from a protein to be:		
			either	only one stereoisomer		
			or	a 1:1 mixture of both stereoisomers		i i
			or	unequal amounts of the two stereoisomers?		
			Tick on	e answer and explain your choice.		
					[2]	
					[Total: 13]	

1

ţ,

,

÷

3 Many organic compounds are used to add flavour to food and drink. Compound A has been used to add grape flavour to soft drinks.

- - (ii) A 330 cm³ can of soft drink contains 0.100 g A. Calculate the concentration, in mol dm⁻³, of A.

- concentration mol dm⁻³ [2]
- (c) Compound **B** is similar to **A** and also has a fruity odour.

(i) The n.m.r. spectrum of **B** is shown below.

From the δ values, identify which of the protons of **B** are responsible for each of the groups of peaks **X**, **Y** and **Z**. Treat the peaks at δ 7–9 as a single group. Show your reasoning in your answer.

(ii) The infra-red spectrum of **B** is shown below. Mark with a cross the **major** absorption peak which is characteristic of the -COOCH₂CH₃ group.

[Total: 12]

- 4 The nitration of an aromatic compound is the first stage in the synthesis of many commercially important compounds.
 - (a) (i) Describe the mechanism of the nitration of benzene. Include the reagents and overall equation in your answer, and show how the electrophile is generated.

For Examiner's Use

9 Examiner's Use Explain why this is classified as an *electrophilic substitution* reaction. (ii) -----.....[2] (b) Compound C is an aromatic nitro compound. ÇH₃ O₂N NO₂ NO₂ С Predict the chemical shifts of the peaks in the n.m.r. spectrum of C.[3] [Total: 11]

For

- 5 Compounds with the formula C_4H_9OH are alcohols.
 - (a) Draw formulae to show the four structural isomers of alcohols with the molecular formula $C_4H_{10}O$.

[4]

(b) One of the isomers in (a), compound D, reacts with $K_2Cr_2O_7$ in the presence of H_2SO_4 , to give E.

When **E** is heated with ethanol in the presence of concentrated H_2SO_4 , compound **F** is formed.

(i) In this question, one mark is available for the quality of written communication.

11

State the reaction, if any, of **each** of your alcohols in **(a)** with acidified $K_2Cr_2O_7$. Use this information and the reactions above to identify **D** and **E**. Give your reasoning.

_____[5] Quality of Written Communication [1] (ii) Write the equation for the formation of **F** from **E**.[1] (c) Compound F and compound G (shown below) are both esters. Draw the structure of the product of the reaction of G with hot, aqueous NaOH. Ho hot NaOH(aq) H₂ G

[2]

[Total: 13]

e	12				For Examiner's Use		
U	from eth	Tydroxypropanoic acid (lactic acid) is present in milk. It can also be made in two stages om ethanal. he laboratory synthesis of 2-hydroxypropanoic acid is outlined below.					
CH₃		stage I	compound	stage II			
	³ ℃ H	HCN, KCN	X		2-nydroxypropanoic acid		
	(a) (i)	Give the mechanis	sm for stage I .				
					[4]		
	(ii)	Describe the seco stating the type of	nd stage of the s reaction involved	synthesis by si	uggesting a suitable reagent and		
		reagent:		••••••			
		type of reaction:			[2]		
	(iii)	Draw the structure	of 2-hydroxyprop	anoic acid.			

[1]

13 Examiner's Use (b) 2-Hydroxypropanoic acid was dissolved in D_2O and an n.m.r. spectrum of the solution was taken. Predict, with reasons, the splitting patterns observed in this spectrum. -----_____[2] (c) Hept-4-enal, H, is also present in milk. //0 Н Deduce the molecular formula of H. (i)[1] Draw the skeletal formula of a stereoisomer of H. (ii) [1] (iii) J and K can be made from H. Draw skeletal formulae for ${\bf J}$ and ${\bf K}$ in the boxes provided. Η **NaBH**₄ H₂, Pd catalyst J Κ [2] [Total: 13]

For

11

- For Examiner's Use
- 7 Polymers can be made either from a single monomer or from more than one monomer. Two polymers, L and M, are shown below.

(a) Deduce the structures of the monomers from which L and M could be obtained.

For L:

For M:

[3]

[2]

(b) Polymer N can be made from the monomer P only, shown below.

Suggest a structure for polymer N, showing three repeat units.

	16	For Examiner's				
8	In this question, one mark is available for the quality of written communication.					
	Ketones of different chain lengths are important to the flavour of dairy foods. You are given a sample of an unknown ketone isolated from cheese.					
	Describe how you would					
	 detect the presence of a carbonyl group in your compound, 					
	 confirm that it is a ketone and not an aldehyde, 					
	 use a chemical method to identify which ketone you have. 					
	[8]					
	Quality of Written Communication [1]					
	[Total: 9]					

Copyright Acknowledgement:

Question 3(i). n.m.r. spectrum at SDBS Web: http://www.aist.go.jp/RJODB/SDBS/14.06.02

OCR has made every effort to trace the copyright holders of items used in this question paper, but if we have inadvertently overlooked any, we apologise.